
Outline Rates of Convergence Newton’s Method

Rates of Covergence
and

Newton’s Method

Rates of Covergence and Newton’s Method



Outline Rates of Convergence Newton’s Method

Rates of Convergence

Newton’s Method

Rates of Covergence and Newton’s Method



Outline Rates of Convergence Newton’s Method

Rates of Convergence

We compare the performance of algorithms by their rate of
convergence.

That is, if xk → x̄ , we are interested in how fast this happens.

We consider only quotient rates, or Q-rates of convergence.
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Rates of Convergence

Let {xν} ⊂ Rn and x̄ ∈ Rn be such that x̄ν → x̄ .

We say that x̄ν → x̄ at a linear rate if

lim sup
ν→∞

‖xν+1 − x̄‖
‖xν − x̄‖

< 1 .

The convergence is said to be superlinear if this limsup is 0.

The convergence is said to be quadratic if

lim sup
ν→∞

‖xν+1 − x̄‖
‖xν − x̄‖2

<∞ .
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Rates of Convergence: Example

Let γ ∈ (0, 1).
{γn} converges linearly to zero, but not superlinearly.

{γn2} converges superlinearly to 0, but not quadratically.

{γ2n} converges quadratically to zero.

Superlinear convergence is much faster than linear convergences,
but quadratic convergence is much, much faster than superlinear
convergence.

γ =
1

2
gives γn = 2−n, γn

2
= 2−n

2
, γ2

n
= 2−2

n
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Example

Let f (x) = x2 + ex .
f is a strongly convex function with

f (x) = x2 + ex

f ′(x) = 2x + ex

f ′′(x) = 2 + ex > 2

f ′′′(x) = ex .

If we apply the steepest descent algorithm with backtracking
(γ = 1/2, c = 0.01) initiated at x0 = 1.
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Example: Steepest Descent

k xk f (xk) f ′(xk) s
0 1 .37182818 4.7182818 0
1 0 1 1 0
2 −.5 .8565307 −0.3934693 1
3 −.25 .8413008 0.2788008 2
4 −.375 .8279143 −.0627107 3
5 −.34075 .8273473 .0297367 5
6 −.356375 .8272131 −.01254 6
7 −.3485625 .8271976 .0085768 7
8 −.3524688 .8271848 −.001987 8
9 −.3514922 .8271841 .0006528 10

10 −.3517364 .827184 −.0000072 12
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Example: Newton’s Method

min f (x) := x2 + ex

xk+1 = xk − f ′(xk)

f ′′(xk)

x f ′(x)

1 4.7182818
0 1
−1/3 .0498646

−.3516893 .00012
−.3517337 .00000000064

In addition, one more iteration gives |f ′(x5)| ≤ 10−20.
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Newton’s Method: the Gold Standard

Newton’s method is an algorithm for solving nonlinear equations.

Given g : Rn → Rn, find x ∈ Rn for which g(x) = 0.

Linearize and Solve:
Given a current estimate of a solution x0 obtain a new estimate x1

as the solution to the equation

0 = g(x0) + g ′(x0)(x − x0) ,

and repeat.
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Newton Like Methods

xk+1 := xk − [g ′(xk)]−1g(xk)

Newton-Like Methods:

xk+1 := xk − Jkg(xk)

where
Jk ≈ g ′(xk)
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Convergence of Newton’s Method

Let g : Rn → Rn be differentiable, x0 ∈ Rn, and J0 ∈ Rn×n. Suppose
that there exists x̄ , x0 ∈ Rn, and ε > 0 with ‖x0 − x̄‖ < ε such that

1. g(x) = 0,

2. g ′(x)−1 exists for x ∈ B(x ; ε) := {x ∈ Rn : ‖x − x‖ < ε} with

sup{‖g ′(x)−1‖ : x ∈ B(x ; ε)] ≤ M1

3. g ′ is Lipschitz continuous on c`B(x ; ε) with Lipschitz constant L,
and

4. θ0 := LM1

2 ‖x
0 − x‖+ M0K < 1 where K ≥ ‖(g ′(x0)−1 − J0)y0‖,

y0 := g(x0)/‖g(x0)‖, and M0 = max{‖g ′(x)‖ : x ∈ B(x ; ε)}.
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Convergence of Newton’s Method

Further suppose that iteration is initiated at x0 where the Jk ’s are chosen
to satisfy one of the following conditions;

(i) ‖(g ′(xk)−1 − Jk)yk‖ ≤ K ,

(ii) ‖(g ′(xk)−1 − Jk)yk‖ ≤ θk1K for some θ1 ∈ (0, 1),

(iii) ‖(g ′(xk)−1 − Jk)yk‖ ≤ min{M2‖xk − xk−1‖,K}, for some M2 > 0,
or

(iv) ‖(g ′(xk)−1 − Jk)yk‖ ≤ min{M2‖g(xk)‖,K}, for some M3 > 0,

where for each k = 1, 2, . . . , yk := g(xk)/‖g(xk)‖.
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Convergence of Newton’s Method

These hypotheses on the accuracy of the approximations Jk yield the
following conclusions about the rate of convergence of the iterates xk .

(a) ‖(g ′(xk)−1 − Jk)yk‖ ≤ K =⇒ xk → x linearly.

(b) ‖(g ′(xk)−1 − Jk)yk‖ ≤ θk1K =⇒ xk → x superlinearly.

(c) ‖(g ′(xk)−1 − Jk)yk‖ ≤ min{M2‖xk − xk−1‖,K} =⇒ xk → x two
step quadratically.

(d) ‖(g ′(xk)−1 − Jk)yk‖ ≤ min{M2‖g(xk)‖,K =⇒ xk → x
quadratically.

Rates of Covergence and Newton’s Method
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Newton’s Method for Minimization: ∇f (x) = 0

Let f : Rn → R be twice continuously differentiable, x0 ∈ Rn, and
H0 ∈ Rn×n. Suppose that

1. there exists x ∈ Rn and ε > ‖x0 − x̄‖ such that f (x) ≤ f (x)
whenever ‖x − x̄‖ ≤ ε,

2. there is a δ > 0 such that δ‖z‖22 ≤ zT∇2f (x)z for all x ∈ B(x , ε),

3. ∇2f is Lipschitz continuous on clB(x ; ε) with Lipschitz constant L,
and

4. θ0 := L
2δ‖x

0 − x‖+ M0K < 1 where M0 > 0 satisfies
zT∇2f (x)z ≤ M0‖z‖22 for all x ∈ B(x , ε) and
K ≥ ‖(∇2f (x0)−1 − H0)y0‖ with y0 = ∇f (x0)/‖∇f (x0)‖.
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Newton’s Method for Minimization: ∇f (x) = 0

Further, suppose that the iteration

xk+1 := xk − Hk∇f (xk)

is initiated at x0 where the Hk ’s are chosen to satisfy one of the following
conditions:

(i) ‖(∇2f (xk)−1 − Hk)yk‖ ≤ K ,

(ii) ‖(∇2f (xk)−1 − Hk)yk‖ ≤ θk1K for some θ1 ∈ (0, 1),

(iii) ‖(∇2f (xk)−1 − Hk)yk‖ ≤ min{M2‖xk − xk−1‖,K}, for some
M2 > 0, or

(iv) ‖(∇2f (xk)−1 − Hk)yk‖ ≤ min{M2‖∇f (xk)‖,K}, for some M3 > 0,

where for each k = 1, 2, . . . yk := ∇f (xk)/‖∇f (xk)‖.
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Newton’s Method for Minimization: ∇f (x) = 0

These hypotheses on the accuracy of the approximations Hk yield the
following conclusions about the rate of convergence of the iterates xk .

(a) If (i) holds, then xk → x linearly.

(b) If (ii) holds, then xk → x superlinearly.

(c) If (iii) holds, then xε → x two step quadratically.

(d) If (iv) holds, then xk → k quadradically.
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