Rates of Covergence and Newton's Method

▲ロト ▲圖 ト ▲画 ト ▲画 ト → 画 → のんの

Newton's Method

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト → 画 → の Q ()

We compare the performance of algorithms by their *rate of convergence*.

We compare the performance of algorithms by their *rate of convergence*.

That is, if $x^k \to \bar{x}$, we are interested in how fast this happens.

We compare the performance of algorithms by their *rate of convergence*.

That is, if $x^k \to \bar{x}$, we are interested in how fast this happens.

We consider only quotient rates, or Q-rates of convergence.

æ

Rates of Convergence

Rates of Covergence and Newton's Method

Let $\{x^{\nu}\} \subset \mathbb{R}^n$ and $\bar{x} \in \mathbb{R}^n$ be such that $\bar{x}^{\nu} \to \bar{x}$.

æ

イロト イヨト イヨト イヨト

Rates of Convergence

Let $\{x^{\nu}\} \subset \mathbb{R}^n$ and $\bar{x} \in \mathbb{R}^n$ be such that $\bar{x}^{\nu} \to \bar{x}$.

We say that $\bar{x}^{
u}
ightarrow \bar{x}$ at a *linear* rate if

$$\limsup_{
u
ightarrow\infty}rac{\|x^{
u+1}-ar{x}\|}{\|x^
u-ar{x}\|}<1\,\,.$$

(日) (同) (三) (三)

Rates of Convergence

Let $\{x^{\nu}\} \subset \mathbb{R}^n$ and $\bar{x} \in \mathbb{R}^n$ be such that $\bar{x}^{\nu} \to \bar{x}$.

We say that $\bar{x}^{
u}
ightarrow \bar{x}$ at a *linear* rate if

$$\limsup_{
u
ightarrow\infty}rac{\|x^{
u+1}-ar{x}\|}{\|x^
u-ar{x}\|}<1\;.$$

The convergence is said to be *superlinear* if this limsup is 0.

Let $\{x^{\nu}\} \subset \mathbb{R}^n$ and $\bar{x} \in \mathbb{R}^n$ be such that $\bar{x}^{\nu} \to \bar{x}$.

We say that $\bar{x}^{\nu} \rightarrow \bar{x}$ at a *linear* rate if

$$\limsup_{
u
ightarrow\infty}rac{\|x^{
u+1}-ar{x}\|}{\|x^
u-ar{x}\|}<1\;.$$

The convergence is said to be *superlinear* if this limsup is 0.

The convergence is said to be quadratic if

$$\limsup_{\nu\to\infty}\frac{\|x^{\nu+1}-\bar{x}\|}{\|x^\nu-\bar{x}\|^2}<\infty\ .$$

(日) (同) (三) (三)

Let $\gamma \in (0, 1)$. $\{\gamma^n\}$ converges linearly to zero, but not superlinearly.

▲ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ● ● ● ●

Let $\gamma \in (0, 1)$. $\{\gamma^n\}$ converges linearly to zero, but not superlinearly. $\{\gamma^{n^2}\}$ converges superlinearly to 0, but not quadratically.

・ロト・西ト・西ト・西・ うくの

Let $\gamma \in (0, 1)$. $\{\gamma^n\}$ converges linearly to zero, but not superlinearly. $\{\gamma^{n^2}\}$ converges superlinearly to 0, but not quadratically. $\{\gamma^{2^n}\}$ converges quadratically to zero.

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● のへで

Let $\gamma \in (0, 1)$. $\{\gamma^n\}$ converges linearly to zero, but not superlinearly. $\{\gamma^{n^2}\}$ converges superlinearly to 0, but not quadratically. $\{\gamma^{2^n}\}$ converges quadratically to zero.

Superlinear convergence is much faster than linear convergences, but quadratic convergence is much, much faster than superlinear convergence.

Let $\gamma \in (0, 1)$. $\{\gamma^n\}$ converges linearly to zero, but not superlinearly. $\{\gamma^{n^2}\}$ converges superlinearly to 0, but not quadratically. $\{\gamma^{2^n}\}$ converges quadratically to zero.

Superlinear convergence is much faster than linear convergences, but quadratic convergence is much, much faster than superlinear convergence.

$$\gamma = \frac{1}{2}$$
 gives $\gamma^n = 2^{-n}, \quad \gamma^{n^2} = 2^{-n^2}, \quad \gamma^{2^n} = 2^{-2^n}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(日) (同) (三) (三)

Example

Let
$$f(x) = x^2 + e^x$$
.

f is a strongly convex function with

$$f(x) = x^{2} + e^{x}$$

$$f'(x) = 2x + e^{x}$$

$$f''(x) = 2 + e^{x} > 2$$

$$f'''(x) = e^{x}.$$

If we apply the steepest descent algorithm with backtracking $(\gamma = 1/2, c = 0.01)$ initiated at $x^0 = 1$.

Example: Steepest Descent

k	x ^k	$f(x^k)$	$f'(x^k)$	5
0	1	.37182818	4.7182818	0
1	0	1	1	0
2	5	.8565307	-0.3934693	1
3	25	.8413008	0.2788008	2
4	375	.8279143	0627107	3
5	34075	.8273473	.0297367	5
6	356375	.8272131	01254	6
7	3485625	.8271976	.0085768	7
8	3524688	.8271848	001987	8
9	3514922	.8271841	.0006528	10
10	3517364	.827184	0000072	12

Example: Newton's Method

$$\min f(x) := x^2 + \mathrm{e}^x$$

$$x^{k+1} = x^k - \frac{f'(x^k)}{f''(x^k)}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Example: Newton's Method

$$\min f(x) := x^2 + \mathrm{e}^x$$

$$x^{k+1} = x^k - \frac{f'(x^k)}{f''(x^k)}$$

X	f'(x)
1	4.7182818
0	1
-1/3	.0498646
3516893	.00012
3517337	.0000000064

▲□▶▲@▶▲≧▶▲≧▶ ≧ の�?

Example: Newton's Method

$$\min f(x) := x^2 + \mathrm{e}^x$$

$$x^{k+1} = x^k - \frac{f'(x^k)}{f''(x^k)}$$

X	f'(x)
1	4.7182818
0	1
-1/3	.0498646
3516893	.00012
3517337	.0000000064

In addition, one more iteration gives $|f'(x^5)| \le 10^{-20}$.

Newton's method is an algorithm for solving nonlinear equations.

Newton's method is an algorithm for solving nonlinear equations.

Given $g : \mathbb{R}^n \to \mathbb{R}^n$, find $x \in \mathbb{R}^n$ for which g(x) = 0.

(日)

Newton's method is an algorithm for solving nonlinear equations.

Given $g : \mathbb{R}^n \to \mathbb{R}^n$, find $x \in \mathbb{R}^n$ for which g(x) = 0.

Linearize and Solve:

▲ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ● ● ●

Newton's method is an algorithm for solving nonlinear equations.

Given
$$g : \mathbb{R}^n \to \mathbb{R}^n$$
, find $x \in \mathbb{R}^n$ for which $g(x) = 0$.

Linearize and Solve:

Given a current estimate of a solution x^0 obtain a new estimate x^1 as the solution to the equation

$$0 = g(x^0) + g'(x^0)(x - x^0) ,$$

and repeat.

Newton Like Methods

$$x^{k+1} := x^k - [g'(x^k)]^{-1}g(x^k)$$

<ロ>

Newton Like Methods

$$x^{k+1} := x^k - [g'(x^k)]^{-1}g(x^k)$$

Newton-Like Methods:

$$x^{k+1} := x^k - J_k g(x^k)$$

where

 $J_k \approx g'(x^k)$

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへの

Let $g : \mathbb{R}^n \to \mathbb{R}^n$ be differentiable, $x^0 \in \mathbb{R}^n$, and $J_0 \in \mathbb{R}^{n \times n}$. Suppose that there exists \bar{x} , $x_0 \in \mathbb{R}^n$, and $\epsilon > 0$ with $||x_0 - \bar{x}|| < \epsilon$ such that

Let $g : \mathbb{R}^n \to \mathbb{R}^n$ be differentiable, $x^0 \in \mathbb{R}^n$, and $J_0 \in \mathbb{R}^{n \times n}$. Suppose that there exists \bar{x} , $x_0 \in \mathbb{R}^n$, and $\epsilon > 0$ with $||x_0 - \bar{x}|| < \epsilon$ such that 1. $g(\bar{x}) = 0$,

Let $g : \mathbb{R}^n \to \mathbb{R}^n$ be differentiable, $x^0 \in \mathbb{R}^n$, and $J_0 \in \mathbb{R}^{n \times n}$. Suppose that there exists \bar{x} , $x_0 \in \mathbb{R}^n$, and $\epsilon > 0$ with $||x_0 - \bar{x}|| < \epsilon$ such that

1.
$$g(\overline{x}) = 0$$
,
2. $g'(x)^{-1}$ exists for $x \in B(\overline{x}; \epsilon) := \{x \in \mathbb{R}^n : ||x - \overline{x}|| < \epsilon\}$ with
 $\sup\{||g'(x)^{-1}|| : x \in B(\overline{x}; \epsilon)\} \le M_1$

Let $g : \mathbb{R}^n \to \mathbb{R}^n$ be differentiable, $x^0 \in \mathbb{R}^n$, and $J_0 \in \mathbb{R}^{n \times n}$. Suppose that there exists \bar{x} , $x_0 \in \mathbb{R}^n$, and $\epsilon > 0$ with $||x_0 - \bar{x}|| < \epsilon$ such that

1.
$$g(\overline{x}) = 0$$
,

2. $g'(x)^{-1}$ exists for $x \in B(\overline{x}; \epsilon) := \{x \in \mathbb{R}^n : \|x - \overline{x}\| < \epsilon\}$ with

$$\sup\{\|g'(x)^{-1}\|: x\in B(\overline{x};\epsilon)]\leq M_1$$

3. g' is Lipschitz continuous on $c\ell B(\overline{x};\epsilon)$ with Lipschitz constant L, and

Let $g : \mathbb{R}^n \to \mathbb{R}^n$ be differentiable, $x^0 \in \mathbb{R}^n$, and $J_0 \in \mathbb{R}^{n \times n}$. Suppose that there exists \bar{x} , $x_0 \in \mathbb{R}^n$, and $\epsilon > 0$ with $||x_0 - \bar{x}|| < \epsilon$ such that

- 1. $g(\bar{x}) = 0$,
- 2. $g'(x)^{-1}$ exists for $x \in B(\overline{x}; \epsilon) := \{x \in \mathbb{R}^n : \|x \overline{x}\| < \epsilon\}$ with

$$\sup\{\|g'(x)^{-1}\|: x\in B(\overline{x};\epsilon)]\leq M_1$$

3. g' is Lipschitz continuous on $c\ell B(\overline{x}; \epsilon)$ with Lipschitz constant L, and

4.
$$\theta_0 := \frac{LM_1}{2} ||x^0 - \overline{x}|| + M_0 K < 1$$
 where $K \ge ||(g'(x^0)^{-1} - J_0)y^0||$,
 $y^0 := g(x^0)/||g(x^0)||$, and $M_0 = \max\{||g'(x)|| : x \in B(\overline{x}; \epsilon)\}.$

Further suppose that iteration is initiated at x^0 where the J_k 's are chosen to satisfy one of the following conditions;

Further suppose that iteration is initiated at x^0 where the J_k 's are chosen to satisfy one of the following conditions;

(i)
$$\|(g'(x^k)^{-1} - J_k)y^k\| \leq K$$
,

where for each
$$k = 1, 2, ..., y^k := g(x^k) / ||g(x^k)||$$
.

Further suppose that iteration is initiated at x^0 where the J_k 's are chosen to satisfy one of the following conditions;

(i)
$$||(g'(x^k)^{-1} - J_k)y^k|| \le K$$
,

(ii)
$$||(g'(x^k)^{-1} - J_k)y^k|| \le \theta_1^k K$$
 for some $\theta_1 \in (0, 1)$,

Further suppose that iteration is initiated at x^0 where the J_k 's are chosen to satisfy one of the following conditions;

(i)
$$||(g'(x^k)^{-1} - J_k)y^k|| \le K$$
,

(ii)
$$\|(g'(x^k)^{-1}-J_k)y^k\| \le heta_1^k K$$
 for some $heta_1 \in (0,1)$,

(iii) $\|(g'(x^k)^{-1} - J_k)y^k\| \le \min\{M_2 \|x^k - x^{k-1}\|, K\}$, for some $M_2 > 0$, or

Further suppose that iteration is initiated at x^0 where the J_k 's are chosen to satisfy one of the following conditions;

(i)
$$||(g'(x^k)^{-1} - J_k)y^k|| \le K$$
,

(ii)
$$\|(g'(x^k)^{-1} - J_k)y^k\| \le \theta_1^k K$$
 for some $\theta_1 \in (0,1)$,

(iii) $\|(g'(x^k)^{-1} - J_k)y^k\| \le \min\{M_2 \|x^k - x^{k-1}\|, K\}$, for some $M_2 > 0$, or

(iv)
$$||(g'(x^k)^{-1} - J_k)y^k|| \le \min\{M_2||g(x^k)||, K\}$$
, for some $M_3 > 0$,

These hypotheses on the accuracy of the approximations J_k yield the following conclusions about the rate of convergence of the iterates x^k .

These hypotheses on the accuracy of the approximations J_k yield the following conclusions about the rate of convergence of the iterates x^k .

(a) $\|(g'(x^k)^{-1} - J_k)y^k\| \le K \implies x^k \to \overline{x}$ linearly.

These hypotheses on the accuracy of the approximations J_k yield the following conclusions about the rate of convergence of the iterates x^k .

(a)
$$||(g'(x^k)^{-1} - J_k)y^k|| \le K \implies x^k \to \overline{x}$$
 linearly.

(b)
$$\|(g'(x^k)^{-1} - J_k)y^k\| \le \theta_1^k K \implies x^k \to \overline{x}$$
 superlinearly.

These hypotheses on the accuracy of the approximations J_k yield the following conclusions about the rate of convergence of the iterates x^k .

(a)
$$||(g'(x^k)^{-1} - J_k)y^k|| \le K \implies x^k \to \overline{x}$$
 linearly.

(b)
$$\|(g'(x^k)^{-1} - J_k)y^k\| \le \theta_1^k K \implies x^k \to \overline{x}$$
 superlinearly.

(c) $\|(g'(x^k)^{-1} - J_k)y^k\| \le \min\{M_2 \|x^k - x^{k-1}\|, K\} \implies x^k \to \overline{x} \text{ two step quadratically.}$

イロト イヨト イヨト イヨト

Convergence of Newton's Method

These hypotheses on the accuracy of the approximations J_k yield the following conclusions about the rate of convergence of the iterates x^k .

(a)
$$||(g'(x^k)^{-1} - J_k)y^k|| \le K \implies x^k \to \overline{x}$$
 linearly.

(b)
$$\|(g'(x^k)^{-1} - J_k)y^k\| \le \theta_1^k K \implies x^k \to \overline{x}$$
 superlinearly.

(c) $\|(g'(x^k)^{-1} - J_k)y^k\| \le \min\{M_2 \|x^k - x^{k-1}\|, K\} \implies x^k \to \overline{x} \text{ two step quadratically.}$

(d)
$$\|(g'(x^k)^{-1} - J_k)y^k\| \le \min\{M_2\|g(x^k)\|, K \implies x^k \to \overline{x}$$

quadratically.

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のQC

Newton's Method for Minimization: $\nabla f(x) = 0$

Let $f : \mathbb{R}^n \to \mathbb{R}$ be twice continuously differentiable, $x^0 \in \mathbb{R}^n$, and $H_0 \in \mathbb{R}^{n \times n}$. Suppose that

1. there exists $\overline{x} \in \mathbb{R}^n$ and $\epsilon > ||x^0 - \overline{x}||$ such that $f(\overline{x}) \leq f(x)$ whenever $||x - \overline{x}|| \leq \epsilon$,

- 1. there exists $\overline{x} \in \mathbb{R}^n$ and $\epsilon > ||x^0 \overline{x}||$ such that $f(\overline{x}) \le f(x)$ whenever $||x \overline{x}|| \le \epsilon$,
- 2. there is a $\delta > 0$ such that $\delta \|z\|_2^2 \le z^{\tau} \nabla^2 f(x) z$ for all $x \in B(\overline{x}, \epsilon)$,

Newton's Method for Minimization: $\nabla f(x) = 0$

- 1. there exists $\overline{x} \in \mathbb{R}^n$ and $\epsilon > ||x^0 \overline{x}||$ such that $f(\overline{x}) \le f(x)$ whenever $||x \overline{x}|| \le \epsilon$,
- 2. there is a $\delta > 0$ such that $\delta \|z\|_2^2 \le z^{\tau} \nabla^2 f(x) z$ for all $x \in B(\overline{x}, \epsilon)$,
- 3. $\nabla^2 f$ is Lipschitz continuous on $clB(\overline{x}; \epsilon)$ with Lipschitz constant L, and

- 1. there exists $\overline{x} \in \mathbb{R}^n$ and $\epsilon > ||x^0 \overline{x}||$ such that $f(\overline{x}) \le f(x)$ whenever $||x \overline{x}|| \le \epsilon$,
- 2. there is a $\delta > 0$ such that $\delta \|z\|_2^2 \le z^{\tau} \nabla^2 f(x) z$ for all $x \in B(\overline{x}, \epsilon)$,
- 3. $\nabla^2 f$ is Lipschitz continuous on $clB(\overline{x}; \epsilon)$ with Lipschitz constant L, and
- 4. $\theta_0 := \frac{L}{2\delta} \|x^0 \overline{x}\| + M_0 K < 1$ where $M_0 > 0$ satisfies $z^{\tau} \nabla^2 f(x) z \leq M_0 \|z\|_2^2$ for all $x \in B(\overline{x}, \epsilon)$ and $K \geq \|(\nabla^2 f(x^0)^{-1} H_0)y^0\|$ with $y^0 = \nabla f(x^0)/\|\nabla f(x^0)\|$.

Further, suppose that the iteration

$$x^{k+1} := x^k - H_k \nabla f(x^k)$$

is initiated at x^0 where the H_k 's are chosen to satisfy one of the following conditions:

where for each $k = 1, 2, \dots y^k := \nabla f(x^k) / \|\nabla f(x^k)\|$.

Further, suppose that the iteration

$$x^{k+1} := x^k - H_k \nabla f(x^k)$$

is initiated at x^0 where the H_k 's are chosen to satisfy one of the following conditions:

(i)
$$\|(\nabla^2 f(x^k)^{-1} - H_k)y^k\| \le K$$
,

where for each $k = 1, 2, \dots y^k := \nabla f(x^k) / \|\nabla f(x^k)\|$.

Further, suppose that the iteration

$$x^{k+1} := x^k - H_k \nabla f(x^k)$$

is initiated at x^0 where the H_k 's are chosen to satisfy one of the following conditions:

(i)
$$\|(\nabla^2 f(x^k)^{-1} - H_k)y^k\| \le K$$
,
(ii) $\|(\nabla^2 f(x^k)^{-1} - H_k)y^k\| \le \theta_1^k K$ for some $\theta_1 \in (0, 1)$,

where for each
$$k = 1, 2, \dots$$
 $y^k := \nabla f(x^k) / \| \nabla f(x^k) \|$.

Further, suppose that the iteration

$$x^{k+1} := x^k - H_k \nabla f(x^k)$$

is initiated at x^0 where the H_k 's are chosen to satisfy one of the following conditions:

(i)
$$\|(\nabla^2 f(x^k)^{-1} - H_k)y^k\| \le K$$
,
(ii) $\|(\nabla^2 f(x^k)^{-1} - H_k)y^k\| \le \theta_1^k K$ for some $\theta_1 \in (0, 1)$,
(iii) $\|(\nabla^2 f(x^k)^{-1} - H_k)y^k\| \le \min\{M_2 \|x^k - x^{k-1}\|, K\}$, for some $M_2 > 0$, or

where for each
$$k = 1, 2, \dots$$
 $y^k := \nabla f(x^k) / \|\nabla f(x^k)\|$.

э

Newton's Method for Minimization: $\nabla f(x) = 0$

Further, suppose that the iteration

$$x^{k+1} := x^k - H_k \nabla f(x^k)$$

is initiated at x^0 where the H_k 's are chosen to satisfy one of the following conditions:

(i)
$$\|(\nabla^2 f(x^k)^{-1} - H_k)y^k\| \le K$$
,
(ii) $\|(\nabla^2 f(x^k)^{-1} - H_k)y^k\| \le \theta_1^k K$ for some $\theta_1 \in (0, 1)$,
(iii) $\|(\nabla^2 f(x^k)^{-1} - H_k)y^k\| \le \min\{M_2\|x^k - x^{k-1}\|, K\}$, for some $M_2 > 0$, or
(iv) $\|(\nabla^2 f(x^k)^{-1} - H_k)y^k\| \le \min\{M_2\|\nabla f(x^k)\|, K\}$, for some $M_3 > 0$,
where for each $k = 1, 2, ..., y^k := \nabla f(x^k) / \|\nabla f(x^k)\|$.

(日) (同) (三) (三)

These hypotheses on the accuracy of the approximations H_k yield the following conclusions about the rate of convergence of the iterates x^k .

(a) If (i) holds, then
$$x^k \to \overline{x}$$
 linearly.

- (b) If (ii) holds, then $x^k \to \overline{x}$ superlinearly.
- (c) If (iii) holds, then $x^{\epsilon} \rightarrow \overline{x}$ two step quadratically.
- (d) If (iv) holds, then $x^k \to \overline{k}$ quadradically.