(1) Let

$$
K:=\mathbb{R}_{-}^{s} \times\{0\}^{m-s}=\left\{v \mid 0 \leq v_{i}, i=1, \ldots, s, v_{i}=0 i=s+1, \ldots, m\right\}
$$

(a) Show that $K^{\circ}=\mathbb{R}_{+}^{s} \times \mathbb{R}^{m-s}$.
(b) Given $z \in K$, show that $N_{K}(z)=\left\{w \in K^{\circ} \mid w_{i} z_{i}=0 i=1, \ldots, s\right\}$.
(2) Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$, and denote the i th row of A by $a_{i} \in \mathbb{R}^{n}, i=1, \ldots, m$. Let $K:=\mathbb{R}_{-}^{s} \times\{0\}^{m-s}$ and set $\Omega:=\{x \mid A x-b \in K\}$ and let $\bar{x} \in \Omega$.
(a) Show that
$T_{\Omega}(\bar{x})=\left\{d \in \mathbb{R}^{n} \mid a_{i}^{T} d \leq 0 i \in I(\bar{x})\right.$ and $\left.a_{i}^{T} d=0 i=s+1, \ldots, m\right\}=\left\{d \in \mathbb{R}^{n} \mid A d \in T_{K}(A \bar{x}-b)\right\}=: A^{-1} T_{K}(A \bar{x}-b)$,
where $I(\bar{x}):=\left\{i \in\{1, \ldots, s\} \mid a_{i}^{T} \bar{x}=0\right\}$.
(b) Show that

$$
N_{\Omega}(\bar{x})=\left\{\sum_{i \in I(\bar{x})} u_{i} a_{i}+\sum_{i=s+1}^{m} u_{i} a_{i} \mid 0 \leq u_{i} i \in I(\bar{x})\right\}=\left\{A^{T} u \mid u \in N_{K}(A x-b)\right\}=: A^{T} N_{K}(A x-b)
$$

(3) Give an example of a smooth nonlinear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, a pair $x, d \in \mathbb{R}^{n}$, and a number $0<c<1$ for which $f^{\prime}(x ; d)<0$ but the backtracking line-seach fails to terminate in a finite number of steps.
(4) Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuously differentiable with $F^{\prime}(x)$ invertible on \mathbb{R}^{n}. The Newton iteration for solving $F(x)=0$ is given by

$$
x^{k+1}=x^{k}-\nabla F\left(x^{k}\right)^{-1} F\left(x^{k}\right)
$$

Although this iteration converges at a quadratic rate locally, it may not converge if the initial point x^{0} is too far from a solution. To compensate for this deficiency, the Newton iteration is often replaced by a damped Newton iteration of the form

$$
x^{k+1}=x^{k}-t_{k} \nabla F\left(x^{k}\right)^{-1} F\left(x^{k}\right)
$$

for some choice of $t_{k}>0$. We consider one approach to choosing t_{k}.
(a) Consider the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $f(x)=\|F(x)\|_{2}$. Show that if $x \in \mathbb{R}^{n}$ is such that $F(x) \neq 0$, then f is differentiable at x with

$$
\nabla f(x)=\nabla F(x)^{T} \frac{F(x)}{f(x)}
$$

(b) Note that one can attempt to solve $F(x)=0$ by minimizing the function $f(x)$. This indicates that a damped Newton step size $t_{k}>0$ can be computed by doing a line search on the function f in the Newton direction $d_{N}=-\nabla F(x)^{-1} F(x)$. As a first step, show that the Newton direction d_{N} is a direction of descent at points x for which $F(x) \neq 0$ by showing that

$$
f^{\prime}\left(x ; d_{N}\right)=-\|F(x)\|_{2}
$$

(c) Show that the backtracking line search applies and takes the form

$$
\begin{array}{lll}
t_{k}= & \max & \gamma^{s} \\
\text { s.t. } & s \in\{0,1, \ldots\} \\
& \left\|F\left(x^{k}+\gamma^{s} d_{N}^{k}\right)\right\|_{2} \leq\left(1-c \gamma^{s}\right)\left\|F\left(x^{k}\right)\right\|_{2}
\end{array}
$$

where $\gamma \in(0,1)$ and $c \in(0,1)$ are the line search parameters.
(5) Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be continuously differentiable and consider the problem of finding a point x such that $F(x)=0$. This is the same problem that led to the development of Newton's method except now we are interested in the case where $n \neq m$. If $m<n$, then there are most likely infinitely many solutions. On the other-hand, if $m>n$, then there are probably no solutions. In this problem we consider the case when $m>n$. Since it is unlikely that there exists an x satisfying $F(x)=0$, we instead try to find an x that makes $\|F(x)\|$ as small as possible. For this we define $f(x)=\frac{1}{2}\|F(x)\|_{2}^{2}$. It is easily shown (try it) that

$$
\begin{aligned}
\nabla f(x) & =\nabla F(x)^{T} F(x) \\
\nabla^{2} f(x) & =\nabla F(x)^{T} \nabla F(x)+\sum_{i=1}^{m} F_{i}(x) \nabla^{2} F_{i}(x)
\end{aligned}
$$

where the functions $F_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are the component functions of F.
(a) In this setting we still try to follow the path suggested by Newton where we successively solve for the search direction using the linearization of F. But in this case the search direction is given as the solution to the linear least squares problem

$$
\mathcal{G \mathcal { N }} \quad \min _{d \in \mathbb{R}^{n}} \frac{1}{2}\left\|F\left(x^{k}\right)+\nabla F\left(x^{k}\right) d\right\|_{2}^{2}
$$

Methods using the solution to this problem as a search direction are called Gauss-Newton methods. Denote a solution by $d_{G N}$. Under what conditions does this problem have a unique solution?
(b) When a unique solution to the problem $\mathcal{G N}$ exists give a formula for $d_{G N}$.
(c) Use this formula for $d_{G N}$ to show that it is a descent direction for f giving a formula for $f^{\prime}\left(x^{k} ; d_{G N}\right)$.
(d) Show that $d_{G N}$ is also a descent direction for the function $h(x)=\|F(x)\|_{2}$.
(e) Assuming that $\nabla F(x)$ is continuous, show that

$$
h^{\prime}(x ; d) \leq\|F(x)+\nabla F(x) d\|_{2}-h(x) .
$$

