
Math 408 Homework Set 8 Solutions

(1) Let

K := Rs
− × {0}m−s = {v |0 ≤ vi, i = 1, . . . , s, vi = 0 i = s+ 1, . . . ,m} .

(a) Show that K◦ = Rs
+ × Rm−s.

Solution: Let (w, z) ∈ Rs
+ × Rm−s. Then, for every (u, v) ∈ Rs

− × {0}m−s, 〈(w, z), (u, v)〉 =
∑s

j=1 wjuj ≤ 0

since wj ≥ 0 and uj ≤ 0, j = 1, . . . , s. So Rs
+ × Rm−s ⊂ K◦. Next let (w, z) ∈ K◦. If there is a j0 ∈ {1, . . . , s}

such that wj0 < 0, then 〈(w, z), (−ej0 , 0)〉 = −wj0 > 0. But (−ej0 , 0) ∈ K which contradicts (w, z) ∈ K◦. So no
such j0 exists giving K◦ ⊂ Rs

+ × Rm−s.

(b) Given z ∈ K, show that NK(z) = {w ∈ K◦ |wizi = 0 i = 1, . . . , s}.

Solution: Given (u, v) ∈ K,

TK((u, v)) = {(p, q) |pi ≤ 0 i ∈ I(u) and q = 0} ,

where I(u) := {i ∈ {1, . . . , s} |ui = 0}. Therefore,

NK((u, v)) = TK((u, v))◦

= {(w, z) |wi ≥ 0 i ∈ I(u), wi = 0 i ∈ {1, . . . , s} \ I(u)}
= {(w, z) ∈ K◦ |wiui = 0 i = 1, . . . s} .

(2) Let A ∈ Rm×n and b ∈ Rm, and denote the ith row of A by ai ∈ Rn, i = 1, . . . ,m. Let K := Rs
− × {0}m−s and set

Ω := {x |Ax− b ∈ K } and let x̄ ∈ Ω.
(a) Show that

TΩ(x̄) =
{
d ∈ Rn

∣∣aTi d ≤ 0 i ∈ I(x̄) and aTi d = 0 i = s+ 1, . . . ,m
}

= {d ∈ Rn |Ad ∈ TK(Ax̄− b)} =: A−1TK(Ax̄− b),

where I(x̄) :=
{
i ∈ {1, . . . , s}

∣∣aTi x̄ = 0
}

.

Solution: This follows immediately from the description of the tangent cone to K given in (1)(b) above.

(b) Show that

NΩ(x̄) =

 ∑
i∈I(x̄)

uiai +

m∑
i=s+1

uiai |0 ≤ ui i ∈ I(x̄)

 =
{
ATu |u ∈ NK(Ax− b)

}
=: ATNK(Ax− b).

Solution: This follows immediately from the description of the normal cone to K given in (1)(b) above.

(3) Give an example of a smooth nonlinear function f : Rn → R, a pair x, d ∈ Rn, and a number 0 < c < 1 for which
f ′(x; d) < 0 but the backtracking line-seach fails to terminate in a finite number of steps.

Solution: Let f(x) := e−x−x, x = 0, d = 1, and c = 1
2 . Then f(x+ td) = f(t) = e−1− t < 1− t = f(x) + ctf ′(x; d)

for all t > 0.

(4) Let F : Rn → Rn be continuously differentiable with ∇F (x) invertible on Rn. The Newton iteration for solving
F (x) = 0 is given by

xk+1 = xk −∇F (xk)−1F (xk) .

Although this iteration converges at a quadratic rate locally, it may not converge if the initial point x0 is too far from
a solution. To compensate for this deficiency, the Newton iteration is often replaced by a damped Newton iteration
of the form

xk+1 = xk − tk∇F (xk)−1F (xk)

for some choice of tk > 0. We consider one approach to choosing tk.
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(a) Consider the function f : Rn → R given by f(x) = ‖F (x)‖2. Show that if x ∈ Rn is such that F (x) 6= 0, then f
is differentiable at x with

∇f(x) = ∇F (x)T
F (x)

f(x)
.

Solution: Apply the chain rule in conjunction with the fact that the function φ(y) = ‖y‖2 is differentiable at
every point except y = 0 with ∇φ(y) = y/‖y‖2 for y 6= 0.

(b) Note that one can attempt to solve F (x) = 0 by minimizing the function f(x). This indicates that a damped
Newton step size tk > 0 can be computed by doing a line search on the function f in the Newton direction
dN = −∇F (x)−1F (x). As a first step, show that the Newton direction dN is a direction of descent at points x
for which F (x) 6= 0 by showing that

f ′(x; dN ) = −‖F (x)‖2 .

Solution: Just plug in to see that

f ′(x; dN ) = ∇f(x)T dN = −
(
∇F (x)T

F (x)

f(x)

)T

∇F (x)−1F (x) = −‖F (x)‖2 .

(c) Show that the backtracking line search applies and takes the form

tk = max γs

s.t. s ∈ {0, 1, . . . }
‖F (xk + γsdkN )‖2 ≤ (1− cγs)‖F (xk)‖2

,

where γ ∈ (0, 1) and c ∈ (0, 1) are the line search parameters.

Solution: We have

f(x+ tdN ) ≤ f(x) + ctf ′(x; dN ) ⇐⇒ ‖F (x+ tdN )‖2 ≤ ‖F (x)‖2 − ct‖F (x)‖2 = (1− ct)‖F (x)‖2.

(5) Let F : Rn → Rm be continuously differentiable and consider the problem of finding a point x such that F (x) = 0.
This is the same problem that led to the development of Newton’s method except now we are interested in the case
where n 6= m. If m < n, then there are most likely infinitely many solutions. On the other-hand, if m > n, then
there are probably no solutions. In this problem we consider the case when m > n. Since it is unlikely that there
exists an x satisfying F (x) = 0, we instead try to find an x that makes ‖F (x)‖ as small as possible. For this we
define f(x) = 1

2‖F (x)‖22. It is easily shown (try it) that

∇f(x) = ∇F (x)TF (x)

∇2f(x) = ∇F (x)T∇F (x) +

m∑
i=1

Fi(x)∇2Fi(x) ,

where the functions Fi : Rn → R are the component functions of F .
(a) In this setting we still try to follow the path suggested by Newton where we successively solve for the search

direction using the linearization of F . But in this case the search direction is given as the solution to the linear
least squares problem

GN min
d∈Rn

1

2
‖F (xk) +∇F (xk)d‖22 .

Methods using the solution to this problem as a search direction are called Gauss-Newton methods. Denote a
solution by dGN . Under what conditions does this problem have a unique solution?

Solution: Our work on the linear least-squares problem in Chapter 1 tells us that this problem has a unique
solution if and only if Nul

(
∇F (xk)

)
= {0}.

(b) When a unique solution to the problem GN exists give a formula for dGN .

Solution: Again from Chapter 1, dGN = −(∇F (xk)T∇F (xk))−1∇F (xk)TF (xk).



(c) Use this formula for dGN to show that it is a descent direction for f giving a formula for f ′(xk; dGN ).

Solution: We Have

f ′(xk; dGN ) = ∇f(xk)T dGN = −(∇F (xk)TF (xk))T (∇F (xk)T∇F (xk))−1∇F (xk)TF (xk) < 0

whenever ∇F (xk)TF (xk) 6= 0 since (∇F (xk)T∇F (xk))−1 is positive definite when Nul
(
∇F (xk)

)
= {0}.

(d) Show that dGN is also a descent direction for the function h(xk) = ‖F (xk)‖2.

Solution:

h′(xk; dGN ) = −
(
∇F (xk)T

F (xk)

‖F (xk)‖2

)T

(∇F (xk)T∇F (xk))−1∇F (xk)TF (xk) =
f ′(xk; dGN )

‖F (xk)‖2
< 0.

(e) Assuming that ∇F (x) is continuous, show that

h′(x; d) ≤ ‖F (x) +∇F (x)d‖2 − h(x) .

Solution: First observe that

h(y) = ‖F (x) +∇F (x)(y − x) + o(‖y − x‖2)‖2 = ‖F (x) +∇F (x)(y − x)‖2 + o(‖y − x‖2),

so that

h′(x; d) = lim
t↓0

‖F (x) + t∇F (x)d‖2 − ‖F (x)‖2
t

.

Next note that for 0 < t < 1, the convexity of the norm implies that

‖F (x) + t∇F (x)d‖2 − ‖F (x)‖2 = ‖(1− t)F (x) + t(F (x) +∇F (x)d)‖2 − ‖F (x)‖2
≤ (1− t)‖F (x)‖2 + t‖F (x) +∇F (x)d‖2 − ‖F (x)‖2
= t (‖F (x) +∇F (x)d‖2 − ‖F (x)‖2) .

Combining this inequality with the expression for h′(x; d) given above yields the result.


