
Math 408 Homework Set 7 Solutions

(1) Find the global minimizers and maximizers, if they exist, for the following functions.
(a) f(x) = x2

1 − 4x1 + 2x2
2 + 7

Solution: This function is fully separable, f(x) = f1(x1)+f2(x2), where f1(x1) = x2
1−4x1 and f2(x2) = 2x2

2+7.
Hence we need only optimize f1 and f2 separately.

f ′1(x1) = 2x1 − 4, f”1(x1) = 2, f ′2(x2) = 4x2, f”2(x2) = 4 .

Hence the unique critical point of f1 is x1 = 2 which is a global minimizer since f1 is a parabola with positive
curvature. Similarly, the unique global minimizer of f2 is x2 = 0. Therefore, the unique global minimizer of f
is (x1, x2) = (2, 1), and f has no other critical points.

(b) f(x) = e−‖x‖
2

Solution: Write f as

f(x) = e−x
2
1e−x

2
2 · · · e−x

2
n =

n∏
j=1

e−x
2
j ,

then it is easily seen that
∂f

∂xk
(x) = −2xkf(x), j = 1, 2, . . . , n.

Hence
∇f(x) = −2f(x)x and ∇2f(x) = 2f(x)

[
2xxT − I

]
.

An expression of the form xyT (x, y ∈ Rn), as appears above, is called the outer product of x and y. It is an
n× n matrix whose ijth entry is xiyj . In particular, we have xT y = trace(xyT ).
Clearly, x = 0 is the unique critical point of f and this critical point is a local maximum of f since the Hessian
of f at the origin is −2I which is negative definite. Indeed, the origin is a global maximizer since f(0) = 1 which
is the largest possible value of eξ for ξ < 0.

(c) f(x) = x2
1 − 2x1x2 + 1

3x
3
2 − 8x2

Solution:

∇f(x) =

[
2(x1 − x2)
x2

2 − 2x1 − 8

]
and ∇2f(x) =

[
2 −2
−2 2x2

]
.

Compute the critical points by setting ∇f(x) = 0. Setting ∂f(x)/∂x1 = 0 gives x1 = x2. Plug this into the
equation ∂f(x)/∂x2 = 0 to get 0 = x2

2 − 2x2 − 8 = (x2 − 4)(x2 + 2). This gives 2 critical points(
x1

x2

)
=

(
4
4

)
,

(
−2
−2

)
,

with

∇2f(4, 4) =

[
2 −2
−2 8

]
and ∇2f(−2,−2) =

[
2 −2
−2 −4

]
.

It is easily shown that ∇2f(4, 4) is positive definite and that ∇2f(−2,−2) has one positive and one negative
eigenvalue. Hence (4, 4) is a local minimizer and (−2,−2) is a saddle point. There are no global maximizers or
minimizers since f(0, x2) = 1

3x
3
2 − 8x2 which goes to +∞ as x2 ↑ +∞ and goes to −∞ as x2 ↓ −∞.

(d) f(x) = (2x1 − x2)2 + (x2 − x3)2 + (x3 − 1)2

Solution: Since f is a sum of squares, the smallest value f can take is zero. Hence any point x̄ at which
f(x̄) = 0 is necessarily a global minimizer. To make f(x) = 0 each of the three squared terms in f must be zero.
From the third term we get x3 = 1. The second term gives x2 = x3 = 1, and the first term gives 2x1 = x2 = 1
so x2 = 1/2. Consequently, (x1, x2, x3) = (1/2, 1, 1) is the unique global minimizer of f .
Note that the function f is a convex function since we can write it in the form of a linear least squares objective:

f(x) = ‖Ax− b‖22, where b =

 0
0
1

 and A =

 2 −1 0
0 1 −1
0 0 1

 .
Hence (x1, x2, x3) = (1/2, 1, 1) is also the unique critical point.

1



(e) f(x) = x4
1 + 16x1x2 + x4

2

Solution:

∇f(x) =

(
4x3

1 + 16x2

4x3
2 + 16x1

)
∇2f(x) =

[
12x2

1 16
16 12x2

2

]
Hence x is a critical point if

0 = 4x3
1 + 16x2

0 = 4x3
2 + 16x1 .

Multiply the first equation by x1 and the second by x2 and subtract to get the equation

0 = 4[x4
1 − x4

2] = 4(x2
1 + x2

2)(x1 + x2)(x1 − x2).

This implies that either x1 = x2 or x1 = −x2. Plug this information into the first equation above to get

0 = 4x3
1 ± 16x1 = 4x1(x2

1 ± 4).

Therefore, the only possible critical points are(
x1

x2

)
=

(
0
0

)
,

(
2
2

)
,

(
2
−2

)
,

(
−2
2

)
,

(
−2
−2

)
.

Since the gradient must be zero, x1 and x2 must have opposite sign. Plugging these vectors into the gradient,
we see that only (

x1

x2

)
=

(
0
0

)
,

(
2
−2

)
,

(
−2
2

)
,

are critical points. Plugging these into the Hessian, we see that x = 0 is a saddle point (the eigenvalues of
∇2f(0) are ±16), and the other two critical points are local minimizers. Furthermore, f is coercive since

f(x) = x4
1 + 16x1x2 + x4

2

≥ x4
1 − 16|x1| |x2|+ x4

2

≥

{
x4

1 − 16|x1|2 + x4
2 if |x1| ≥ |x2|,

x4
1 − 16|x2|2 + x4

2 if |x2| ≥ |x1|,

f is coercive (i.e. the right hand side of this inequality necessarily diverges to +∞ as ‖x‖ goes to infinity).
Hence the critical points (x1, x2) = (2,−2), (−2, 2) are global minimizers.

(f) f(x) = (1− x1)2 +
∑n−1
j=1 10j(xj − x2

j+1)2 (The Rosenbrock function)

Solution: Again, f is a sum of squares so any point at which the function takes the value zero is necessarily a
global minimizer. The first term indicates that we should take x1 = 1. The second term requires x2 = ±x1 = ±1.
The third term has x2 = x2

3, so x2 ≥ 0 implying that x2 = 1. Moreover, x3 = ±1. Continuing in this way we
get 1 = x1 = x2 = · · · = xn−1 and xn = ±1, so that there are two global minimizers. There is only one other
critical point for this function: x1 = 1/11, 0 = x2 = x2, . . . , xn. One can show that it is a saddle point.

(2) Locate all of the KKT points for the following problems. Can you show that these points are local solutions? Global
solutions?
(a)

minimize e(x1−x2)

subject to ex1 + ex2 ≤ 20
0 ≤ x1

Solution: This is convex problem so any local solution is a global solution. Obviously, we wish to make x1 as
small as possible and x2 as big as possible. Hence, we must have x1 = 0 which gives the solution (x1, x2) =
(0, ln(20−1)). By plugging this solution into the KKT conditions, we obtain the multipliers (y1, y2) = (1, 2)/19.

(b)
minimize e(−x1+x2)

subject to ex1 + ex2 ≤ 20
0 ≤ x1

Solution: Here we want to make x1 as big as possible and x2 as small as possible. By fixing x1 at zero and
sending x2 to −∞, the constraints are satisfied and the objective goes to zero. Hence, no solution exists and
the optimal value is 0.



(c)

minimize x2
1 + x2

2 − 4x1 − 4x2

subject to x2
1 ≤ x2

x1 + x2 ≤ 2

Solution: This is a convex optimization problem and so any KKT point will give global optimality. Check that
(x1, x2) = (1, 1) and (y1, y2) = (0, 2) is a KKT pair for this problem.

(d)

minimize 1
2‖x‖

2
2

subject to Ax = b

where b ∈ Rm and A ∈ Rm×n satisfies Nul (AT ) = {0}.
Solution: This is a convex problem so x̄ is a solution if and only if there is a ȳ such that (x̄, ȳ) is a KKT
pair for this problem. The Lagrangian is L(x, y) = 1

2‖x‖
2
2 + yT (b − Ax). The KKT conditions are Ax̄ = b and

x̄ = AT ȳ. Hence b = Ax̄ = AAT ȳ. Since Nul (AT ) = {0}, Nul (AAT ) = {0} so that the matrix AAT is invertible.
Consequently, ȳ = (AAT )−1b and x̄ = AT ȳ = AT (AAT )−1b.

(3) Show that the set

Ω := {x ∈ R2| − x3
1 ≤ x2 ≤ x3

1}
is not regular at the origin. Graph the set Ω.

Solution: TΩ(0, 0) = {0} × R+ while{
d
∣∣∇f1(0, 0)T d ≤ 0 and ∇f1(0, 0)T d ≤ 0

}
= {0} × R ,

where f1(x1, x2) = −(x3
1 + x2) and f2(x1, x2) = x2 − x3

1.

(4) Construct an example of a constraint region of the form

{x |f1(x) ≤ 0 i = 1, . . . , s, fi(x) = 0 i = s+ 1, . . . ,m}
at which the MFCQ is satisfied, but the LI condition is not satisfied.

Solution:
{

(x1, x2)
∣∣x3

1 ≤ x2 and 0 ≤ x2

}
.

(5) Suppose Ω = {x ; Ax ≤ b, Ex = h} where A ∈ Rm×, E ∈ Rk×n, b ∈ Rm, and h ∈ Rk.
(a) Given x ∈ Ω, show that

TΩ(x) = {d : Ai·d ≤ 0 for i ∈ I(x), Ed = 0},
where Ai· denotes the ith row of the matrix A and I(x) = {i Ai·x = bi}.
Solution: It was shown in class (see page 3 of the course notes Optimality Conditions for Constrained Problems)
that

(♠) TΩ(x) ⊂ {d : Ai·d ≤ 0 for i ∈ I(x), Ed = 0},
so we need only show the reverse inclusion. Let x ∈ Ω and d be and element of the set of the right hand side of
(♠). Note that by continuity there is a t̄ > 0 such that x+ td ∈ Ω for all 0 ≤ t ≤ t̄. Hence d ∈ TΩ(x).

(b) Given x ∈ Ω, show that every d ∈ TΩ(x) is a feasible direction for Ω at x.

Solution: This is what we showed in the answer to the previous question.

(c) Note that parts (a) and (b) above show that

TΩ(x) =
⋃
λ>0

λ(Ω− x)

whenever Ω is a convex polyhedral set. Why?

Solution: Because every polyhedral convex set canb be given a representation

Ω = {x ; Ax ≤ b, Ex = h} .

(6) Show that each of the following functions is convex or strictly convex.
(a) f(x, y) = 5x2 + 2xy + y2 − x+ 2y + 3

(b) f(x, y) =

{
(x+ 2y + 1)8 − log((xy)2), if 0 < x, 0 < y,
+∞, otherwise.

(c) f(x, y) = 4e3x−y + 5ex
2+y2



(d) f(x, y) =

{
x+ 2

x + 2y + 4
y , if 0 < x, 0 < y,

+∞, otherwise.

Solution

(a) f is quadratic with Q =

[
10 2
2 2

]
, where Q is positive definite. Hence f is strictly convex.

(b) For (x, y) ∈ R2
++,

f(x, y) = (x+ 2y + 1)8 − 2 log x − 2 log y.

Since β 7→ β8, the composition (x + 2y + 1)8 is convex Also, the mapping µ 7→ − logµ for µ > 0 is strictly
convex. Hence the result follows since the non-negative linear combination of convex functions is convex. It is
strictly convex due the log terms in x and y.

(c) The result follows since the non-negative linear combination of convex functions is convex. It is strictly convex

since the mapping (x, y) 7→ ex
2+y2 is strictly convex.

(d) For (x, y) ∈ R2
++, ∇2f(x, y) =

[
2x−2 0

0 4y−2

]
which is positive definite, so f is strictly convex.

(7) Consider the global minimizers of the functions given in the previous problem if they exist.
(a) Compute the unique global minimizer.

Solution: x̄ = −Q−1b where b =

(
−1
2

)
.

(b) Show that that global minimizer is obtained by solving the equation 4x(x +
√

2x + 1)7 = 1 for x > 0, then

setting y =
√
x/2.

Solution: Setting the gradients equal to zero tells us that

1

4
= x(x+ 2y + 1)7

1

8
= y2(x+ 2y + 1)7,

yielding y =
√
x/2 since x and y are positive. Plugging this expression for y into the second expression above

gives 4x(x+
√

2x+ 1)7 = 1 for x > 0.

(c) Show that the unique global solution is given by numerically solving the equation 5y exp(10(y2 + 1)) = 2 for y
then set x = −3y.

Solution: Setting the gradients equal to zero tells us that

0 = 12 exp(3x− y) + 10x exp(x2 + y2)

0 = −4 exp(3x− y) + 10y exp(x2 + y2).

Multiplying the first expression by y and the second by −x and adding yields 0 = (12y+ 4x) exp(3x− y) so that
x = −3y. Plugging this expression for x into the first equation above gives 5y exp(10(y2 + 1)) = 2.

(d) Compute the unique global minimizer.

Solution: Just set the gradient to zero to get x = y =
√

2.

(8) Let Q ∈ Sn++ and c ∈ Rn. By making explicit use of Q−1, compute the Lagrangian dual to the convex quadratic
program

Q minimize 1
2x

TQx+ cTx
subject to Ax ≤ b, 0 ≤ x .

Solution: The Lagrangian is L(x, u, v) = 1
2x

TQx+ cTx+ uT (Ax− b)− vTx with 0 ≤ u, 0 ≤ v. Stationarity of the
Lagrangian gives

0 = ∇xL(x, u, v) = Qx+ c+ATu− v,



so that x̄ = −Q−1(c+ATu− v). Plugging this into L gives

L(x̄, u, v) =
1

2
(c+ATu− v)TQ−1(c+ATu− v)− (c+ATu− v)TQ−1(c+ATu− v)− bTu

= −
[

1

2
(c+ATu− v)TQ−1(c+ATu− v) + bTu

]
.

Hence the dual is

maximize −
[

1

2
(c+ATu− v)TQ−1(c+ATu− v) + bTu

]
subject to 0 ≤ u, 0 ≤ v.

Moreover, if (ū, v̄) solve the dual, then x̄ = −Q−1(c+AT ū− v̄) solves the primal.

(9) Consider the functions

f(x) =
1

2
xTQx− cTx

and

ft(x) =
1

2
xTQx− cTx+ tφ(x),

where t > 0, Q ∈ Sn+, c ∈ Rn, and φ : Rn → R ∪ {+∞} is given by

φ(x) =

{
−
∑n
i=1 lnxi , if xi > 0, i = 1, 2, . . . , n,

+∞ , otherwise.

(a) Show that φ is a convex function.
(b) Show that both f and ft are convex functions.
(c) Show that the solution to the problem min ft(x) always exists and is unique.
(d) Let {ti} be a decreasing sequence of positive real scalars with ti ↓ 0, and let xi be the solution to the problem

min fti(x). Show that if the sequence {xi} has a cluster point x̄, then x̄ must be a solution to the problem
min{f(x) : 0 ≤ x}.
Hint: Use the KKT conditions for the QP min{f(x) : 0 ≤ x}.

Solution
(a) ∇2φ(x) = diag(x)−2 which is positive definite on Rn++.
(b) ∇2f(x) = Q which is positive definite. The result follows from (a) and the fact that the sum of two convex

functions is convex.
(c) The sum of a symmetric positive definite and symmetric positive semi-definite matrix is symmetric and positive

definite. So ∇ft is everywhere positive definite which implies that ft is strictly convex. Hence if a solution
exists, it must be unique.

(d) For all i = 1, 2, . . . , we have 0 = ∇fti(xi) = Qxi − c− tidiag(xi)−11, where 1 is the vector of all ones. Without
loss of generality we can assume that xi → x̄. Set v̄ := Qx̄−c so that tidiag(xi)−11 = Qxi−c→ v̄ ≥ 0. Observe
that v̄T x̄ = limi ti1

Tdiag(xi)−1xi = limi tin = 0. Hence (x̄, v̄) is a KKT pair for the convex optimization
problem min {f(x) |0 ≤ x} which implies that x̄ must be a solution to this problem.


