(1) Find the global minimizers and maximizers, if they exist, for the following functions.
(a) $f(x)=x_{1}^{2}-4 x_{1}+2 x_{2}^{2}+7$

Solution: This function is fully separable, $f(x)=f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)$, where $f_{1}\left(x_{1}\right)=x_{1}^{2}-4 x_{1}$ and $f_{2}\left(x_{2}\right)=2 x_{2}^{2}+7$. Hence we need only optimize f_{1} and f_{2} separately.

$$
f_{1}^{\prime}\left(x_{1}\right)=2 x_{1}-4, f{ }^{\prime}{ }_{1}\left(x_{1}\right)=2, f_{2}^{\prime}\left(x_{2}\right)=4 x_{2}, f "_{2}\left(x_{2}\right)=4
$$

Hence the unique critical point of f_{1} is $x_{1}=2$ which is a global minimizer since f_{1} is a parabola with positive curvature. Similarly, the unique global minimizer of f_{2} is $x_{2}=0$. Therefore, the unique global minimizer of f is $\left(x_{1}, x_{2}\right)=(2,1)$, and f has no other critical points.
(b) $f(x)=\mathrm{e}^{-\|x\|^{2}}$

Solution: Write f as

$$
f(x)=\mathrm{e}^{-x_{1}^{2}} \mathrm{e}^{-x_{2}^{2}} \cdots \mathrm{e}^{-x_{n}^{2}}=\prod_{j=1}^{n} \mathrm{e}^{-x_{j}^{2}}
$$

then it is easily seen that

$$
\frac{\partial f}{\partial x_{k}}(x)=-2 x_{k} f(x), \quad j=1,2, \ldots, n
$$

Hence

$$
\nabla f(x)=-2 f(x) x \quad \text { and } \quad \nabla^{2} f(x)=2 f(x)\left[2 x x^{T}-I\right]
$$

An expression of the form $x y^{T}\left(x, y \in \mathbb{R}^{n}\right)$, as appears above, is called the outer product of x and y. It is an $n \times n$ matrix whose $i j$ th entry is $x_{i} y_{j}$. In particular, we have $x^{T} y=\operatorname{trace}\left(x y^{T}\right)$.
Clearly, $x=0$ is the unique critical point of f and this critical point is a local maximum of f since the Hessian of f at the origin is $-2 I$ which is negative definite. Indeed, the origin is a global maximizer since $f(0)=1$ which is the largest possible value of e^{ξ} for $\xi<0$.
(c) $f(x)=x_{1}^{2}-2 x_{1} x_{2}+\frac{1}{3} x_{2}^{3}-8 x_{2}$

Solution:

$$
\nabla f(x)=\left[\begin{array}{c}
2\left(x_{1}-x_{2}\right) \\
x_{2}^{2}-2 x_{1}-8
\end{array}\right] \quad \text { and } \quad \nabla^{2} f(x)=\left[\begin{array}{cc}
2 & -2 \\
-2 & 2 x_{2}
\end{array}\right]
$$

Compute the critical points by setting $\nabla f(x)=0$. Setting $\partial f(x) / \partial x_{1}=0$ gives $x_{1}=x_{2}$. Plug this into the equation $\partial f(x) / \partial x_{2}=0$ to get $0=x_{2}^{2}-2 x_{2}-8=\left(x_{2}-4\right)\left(x_{2}+2\right)$. This gives 2 critical points

$$
\binom{x_{1}}{x_{2}}=\binom{4}{4},\binom{-2}{-2}
$$

with

$$
\nabla^{2} f(4,4)=\left[\begin{array}{cc}
2 & -2 \\
-2 & 8
\end{array}\right] \quad \text { and } \quad \nabla^{2} f(-2,-2)=\left[\begin{array}{cc}
2 & -2 \\
-2 & -4
\end{array}\right]
$$

It is easily shown that $\nabla^{2} f(4,4)$ is positive definite and that $\nabla^{2} f(-2,-2)$ has one positive and one negative eigenvalue. Hence $(4,4)$ is a local minimizer and $(-2,-2)$ is a saddle point. There are no global maximizers or minimizers since $f\left(0, x_{2}\right)=\frac{1}{3} x_{2}^{3}-8 x_{2}$ which goes to $+\infty$ as $x_{2} \uparrow+\infty$ and goes to $-\infty$ as $x_{2} \downarrow-\infty$.
(d) $f(x)=\left(2 x_{1}-x_{2}\right)^{2}+\left(x_{2}-x_{3}\right)^{2}+\left(x_{3}-1\right)^{2}$

Solution: Since f is a sum of squares, the smallest value f can take is zero. Hence any point \bar{x} at which $f(\bar{x})=0$ is necessarily a global minimizer. To make $f(x)=0$ each of the three squared terms in f must be zero. From the third term we get $x_{3}=1$. The second term gives $x_{2}=x_{3}=1$, and the first term gives $2 x_{1}=x_{2}=1$ so $x_{2}=1 / 2$. Consequently, $\left(x_{1}, x_{2}, x_{3}\right)=(1 / 2,1,1)$ is the unique global minimizer of f.
Note that the function f is a convex function since we can write it in the form of a linear least squares objective:

$$
f(x)=\|A x-b\|_{2}^{2}, \quad \text { where } b=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \text { and } A=\left[\begin{array}{ccc}
2 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]
$$

Hence $\left(x_{1}, x_{2}, x_{3}\right)=(1 / 2,1,1)$ is also the unique critical point.
(e) $f(x)=x_{1}^{4}+16 x_{1} x_{2}+x_{2}^{4}$

Solution:

$$
\nabla f(x)=\binom{4 x_{1}^{3}+16 x_{2}}{4 x_{2}^{3}+16 x_{1}} \quad \nabla^{2} f(x)=\left[\begin{array}{cc}
12 x_{1}^{2} & 16 \\
16 & 12 x_{2}^{2}
\end{array}\right]
$$

Hence x is a critical point if

$$
\begin{aligned}
& 0=4 x_{1}^{3}+16 x_{2} \\
& 0=4 x_{2}^{3}+16 x_{1}
\end{aligned}
$$

Multiply the first equation by x_{1} and the second by x_{2} and subtract to get the equation

$$
0=4\left[x_{1}^{4}-x_{2}^{4}\right]=4\left(x_{1}^{2}+x_{2}^{2}\right)\left(x_{1}+x_{2}\right)\left(x_{1}-x_{2}\right)
$$

This implies that either $x_{1}=x_{2}$ or $x_{1}=-x_{2}$. Plug this information into the first equation above to get

$$
0=4 x_{1}^{3} \pm 16 x_{1}=4 x_{1}\left(x_{1}^{2} \pm 4\right)
$$

Therefore, the only possible critical points are

$$
\binom{x_{1}}{x_{2}}=\binom{0}{0},\binom{2}{2},\binom{2}{-2},\binom{-2}{2},\binom{-2}{-2}
$$

Since the gradient must be zero, x_{1} and x_{2} must have opposite sign. Plugging these vectors into the gradient, we see that only

$$
\binom{x_{1}}{x_{2}}=\binom{0}{0},\binom{2}{-2},\binom{-2}{2}
$$

are critical points. Plugging these into the Hessian, we see that $x=0$ is a saddle point (the eigenvalues of $\nabla^{2} f(0)$ are ± 16), and the other two critical points are local minimizers. Furthermore, f is coercive since

$$
\begin{aligned}
f(x) & =x_{1}^{4}+16 x_{1} x_{2}+x_{2}^{4} \\
& \geq x_{1}^{4}-16\left|x_{1}\right|\left|x_{2}\right|+x_{2}^{4} \\
& \geq \begin{cases}x_{1}^{4}-16\left|x_{1}\right|^{2}+x_{2}^{4} \quad \text { if }\left|x_{1}\right| \geq\left|x_{2}\right| \\
x_{1}^{4}-16\left|x_{2}\right|^{2}+x_{2}^{4} & \text { if }\left|x_{2}\right| \geq\left|x_{1}\right|\end{cases}
\end{aligned}
$$

f is coercive (i.e. the right hand side of this inequality necessarily diverges to $+\infty$ as $\|x\|$ goes to infinity). Hence the critical points $\left(x_{1}, x_{2}\right)=(2,-2),(-2,2)$ are global minimizers.
$f(x)=\left(1-x_{1}\right)^{2}+\sum_{j=1}^{n-1} 10^{j}\left(x_{j}-x_{j+1}^{2}\right)^{2}$ (The Rosenbrock function)
Solution: Again, f is a sum of squares so any point at which the function takes the value zero is necessarily a global minimizer. The first term indicates that we should take $x_{1}=1$. The second term requires $x_{2}= \pm x_{1}= \pm 1$. The third term has $x_{2}=x_{3}^{2}$, so $x_{2} \geq 0$ implying that $x_{2}=1$. Moreover, $x_{3}= \pm 1$. Continuing in this way we get $1=x_{1}=x_{2}=\cdots=x_{n-1}$ and $x_{n}= \pm 1$, so that there are two global minimizers. There is only one other critical point for this function: $x_{1}=1 / 11,0=x_{2}=x_{2}, \ldots, x_{n}$. One can show that it is a saddle point.
(2) Locate all of the KKT points for the following problems. Can you show that these points are local solutions? Global solutions?
(a)

$$
\begin{array}{ll}
\operatorname{minimize} & e^{\left(x_{1}-x_{2}\right)} \\
\text { subject to } & e^{x_{1}}+e^{x_{2}} \leq 20 \\
& 0 \leq x_{1}
\end{array}
$$

Solution: This is convex problem so any local solution is a global solution. Obviously, we wish to make x_{1} as small as possible and x_{2} as big as possible. Hence, we must have $x_{1}=0$ which gives the solution $\left(x_{1}, x_{2}\right)=$ $(0, \ln (20-1))$. By plugging this solution into the KKT conditions, we obtain the multipliers $\left(y_{1}, y_{2}\right)=(1,2) / 19$.

$$
\begin{array}{ll}
\operatorname{minimize} & e^{\left(-x_{1}+x_{2}\right)} \tag{b}\\
\text { subject to } & e^{x_{1}}+e^{x_{2}} \leq 20 \\
& 0 \leq x_{1}
\end{array}
$$

Solution: Here we want to make x_{1} as big as possible and x_{2} as small as possible. By fixing x_{1} at zero and sending x_{2} to $-\infty$, the constraints are satisfied and the objective goes to zero. Hence, no solution exists and the optimal value is 0 .
(c)

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1}^{2}+x_{2}^{2}-4 x_{1}-4 x_{2} \\
\text { subject to } & x_{1}^{2} \leq x_{2} \\
& x_{1}+x_{2} \leq 2
\end{array}
$$

Solution: This is a convex optimization problem and so any KKT point will give global optimality. Check that $\left(x_{1}, x_{2}\right)=(1,1)$ and $\left(y_{1}, y_{2}\right)=(0,2)$ is a KKT pair for this problem.
(d)

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2}\|x\|_{2}^{2} \\
\text { subject to } & A x=b
\end{array}
$$

where $b \in \mathbb{R}^{m}$ and $A \in \mathbb{R}^{m \times n}$ satisfies $\operatorname{Nul}\left(A^{T}\right)=\{0\}$.
Solution: This is a convex problem so \bar{x} is a solution if and only if there is a \bar{y} such that (\bar{x}, \bar{y}) is a KKT pair for this problem. The Lagrangian is $L(x, y)=\frac{1}{2}\|x\|_{2}^{2}+y^{T}(b-A x)$. The KKT conditions are $A \bar{x}=b$ and $\bar{x}=A^{T} \bar{y}$. Hence $b=A \bar{x}=A A^{T} \bar{y}$. Since $\operatorname{Nul}\left(A^{T}\right)=\{0\}, \operatorname{Nul}\left(A A^{T}\right)=\{0\}$ so that the matrix $A A^{T}$ is invertible. Consequently, $\bar{y}=\left(A A^{T}\right)^{-1} b$ and $\bar{x}=A^{T} \bar{y}=A^{T}\left(A A^{T}\right)^{-1} b$.
(3) Show that the set

$$
\Omega:=\left\{x \in \mathbb{R}^{2} \mid-x_{1}^{3} \leq x_{2} \leq x_{1}^{3}\right\}
$$

is not regular at the origin. Graph the set Ω.
Solution: $T_{\Omega}(0,0)=\{0\} \times \mathbb{R}_{+}$while

$$
\left\{d \mid \nabla f_{1}(0,0)^{T} d \leq 0 \text { and } \nabla f_{1}(0,0)^{T} d \leq 0\right\}=\{0\} \times \mathbb{R}
$$

where $f_{1}\left(x_{1}, x_{2}\right)=-\left(x_{1}^{3}+x_{2}\right)$ and $f_{2}\left(x_{1}, x_{2}\right)=x_{2}-x_{1}^{3}$.
(4) Construct an example of a constraint region of the form

$$
\left\{x \mid f_{1}(x) \leq 0 i=1, \ldots, s, f_{i}(x)=0 i=s+1, \ldots, m\right\}
$$

at which the MFCQ is satisfied, but the LI condition is not satisfied.
Solution: $\left\{\left(x_{1}, x_{2}\right) \mid x_{1}^{3} \leq x_{2}\right.$ and $\left.0 \leq x_{2}\right\}$.
(5) Suppose $\Omega=\{x ; A x \leq b, E x=h\}$ where $A \in \mathbb{R}^{m \times}, E \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^{m}$, and $h \in \mathbb{R}^{k}$.
(a) Given $x \in \Omega$, show that

$$
T_{\Omega}(x)=\left\{d: A_{i} \cdot d \leq 0 \text { for } i \in I(x), E d=0\right\}
$$

where A_{i}. denotes the i th row of the matrix A and $I(x)=\left\{i A_{i} . x=b_{i}\right\}$.
Solution: It was shown in class (see page 3 of the course notes Optimality Conditions for Constrained Problems) that

$$
T_{\Omega}(x) \subset\left\{d: A_{i} . d \leq 0 \text { for } i \in I(x), E d=0\right\}
$$

so we need only show the reverse inclusion. Let $x \in \Omega$ and d be and element of the set of the right hand side of $(\boldsymbol{\uparrow})$. Note that by continuity there is a $\bar{t}>0$ such that $x+t d \in \Omega$ for all $0 \leq t \leq \bar{t}$. Hence $d \in T_{\Omega}(x)$.
(b) Given $x \in \Omega$, show that every $d \in T_{\Omega}(x)$ is a feasible direction for Ω at x.

Solution: This is what we showed in the answer to the previous question.
(c) Note that parts (a) and (b) above show that

$$
T_{\Omega}(x)=\bigcup_{\lambda>0} \lambda(\Omega-x)
$$

whenever Ω is a convex polyhedral set. Why?
Solution: Because every polyhedral convex set canb be given a representation

$$
\Omega=\{x ; A x \leq b, E x=h\}
$$

(6) Show that each of the following functions is convex or strictly convex.
(a) $f(x, y)=5 x^{2}+2 x y+y^{2}-x+2 y+3$
(b) $f(x, y)= \begin{cases}(x+2 y+1)^{8}-\log \left((x y)^{2}\right), & \text { if } 0<x, 0<y, \\ +\infty, & \text { otherwise } .\end{cases}$
(c) $f(x, y)=4 e^{3 x-y}+5 e^{x^{2}+y^{2}}$
(d) $f(x, y)= \begin{cases}x+\frac{2}{x}+2 y+\frac{4}{y}, & \text { if } 0<x, 0<y, \\ +\infty, & \text { otherwise. }\end{cases}$

Solution

(a) f is quadratic with $Q=\left[\begin{array}{cc}10 & 2 \\ 2 & 2\end{array}\right]$, where Q is positive definite. Hence f is strictly convex.
(b) For $(x, y) \in \mathbb{R}_{++}^{2}$,

$$
f(x, y)=(x+2 y+1)^{8}-2 \log x-2 \log y
$$

Since $\beta \mapsto \beta^{8}$, the composition $(x+2 y+1)^{8}$ is convex Also, the mapping $\mu \mapsto-\log \mu$ for $\mu>0$ is strictly convex. Hence the result follows since the non-negative linear combination of convex functions is convex. It is strictly convex due the log terms in x and y.
(c) The result follows since the non-negative linear combination of convex functions is convex. It is strictly convex since the mapping $(x, y) \mapsto e^{x^{2}+y^{2}}$ is strictly convex.
(d) For $(x, y) \in \mathbb{R}_{++}^{2}, \nabla^{2} f(x, y)=\left[\begin{array}{cc}2 x^{-2} & 0 \\ 0 & 4 y^{-2}\end{array}\right]$ which is positive definite, so f is strictly convex.
(7) Consider the global minimizers of the functions given in the previous problem if they exist.
(a) Compute the unique global minimizer.

Solution: $\bar{x}=-Q^{-1} b$ where $b=\binom{-1}{2}$.
(b) Show that that global minimizer is obtained by solving the equation $4 x(x+\sqrt{2 x}+1)^{7}=1$ for $x>0$, then setting $y=\sqrt{x / 2}$.

Solution: Setting the gradients equal to zero tells us that

$$
\begin{aligned}
& \frac{1}{4}=x(x+2 y+1)^{7} \\
& \frac{1}{8}=y^{2}(x+2 y+1)^{7}
\end{aligned}
$$

yielding $y=\sqrt{x / 2}$ since x and y are positive. Plugging this expression for y into the second expression above gives $4 x(x+\sqrt{2 x}+1)^{7}=1$ for $x>0$.
(c) Show that the unique global solution is given by numerically solving the equation $5 y \exp \left(10\left(y^{2}+1\right)\right)=2$ for y then set $x=-3 y$.

Solution: Setting the gradients equal to zero tells us that

$$
\begin{aligned}
& 0=12 \exp (3 x-y)+10 x \exp \left(x^{2}+y^{2}\right) \\
& 0=-4 \exp (3 x-y)+10 y \exp \left(x^{2}+y^{2}\right)
\end{aligned}
$$

Multiplying the first expression by y and the second by $-x$ and adding yields $0=(12 y+4 x) \exp (3 x-y)$ so that $x=-3 y$. Plugging this expression for x into the first equation above gives $5 y \exp \left(10\left(y^{2}+1\right)\right)=2$.
(d) Compute the unique global minimizer.

Solution: Just set the gradient to zero to get $x=y=\sqrt{2}$.
(8) Let $Q \in \mathcal{S}_{++}^{n}$ and $c \in \mathbb{R}^{n}$. By making explicit use of Q^{-1}, compute the Lagrangian dual to the convex quadratic program

$$
\begin{array}{lll}
\mathcal{Q} & \text { minimize } & \frac{1}{2} x^{T} Q x+c^{T} x \\
& \text { subject to } & A x \leq b, 0 \leq x
\end{array}
$$

Solution: The Lagrangian is $L(x, u, v)=\frac{1}{2} x^{T} Q x+c^{T} x+u^{T}(A x-b)-v^{T} x$ with $0 \leq u, 0 \leq v$. Stationarity of the Lagrangian gives

$$
0=\nabla_{x} L(x, u, v)=Q x+c+A^{T} u-v
$$

so that $\bar{x}=-Q^{-1}\left(c+A^{T} u-v\right)$. Plugging this into L gives

$$
\begin{aligned}
L(\bar{x}, u, v) & =\frac{1}{2}\left(c+A^{T} u-v\right)^{T} Q^{-1}\left(c+A^{T} u-v\right)-\left(c+A^{T} u-v\right)^{T} Q^{-1}\left(c+A^{T} u-v\right)-b^{T} u \\
& =-\left[\frac{1}{2}\left(c+A^{T} u-v\right)^{T} Q^{-1}\left(c+A^{T} u-v\right)+b^{T} u\right]
\end{aligned}
$$

Hence the dual is

$$
\begin{aligned}
& \operatorname{maximize}-\left[\frac{1}{2}\left(c+A^{T} u-v\right)^{T} Q^{-1}\left(c+A^{T} u-v\right)+b^{T} u\right] \\
& \text { subject to } 0 \leq u, 0 \leq v
\end{aligned}
$$

Moreover, if (\bar{u}, \bar{v}) solve the dual, then $\bar{x}=-Q^{-1}\left(c+A^{T} \bar{u}-\bar{v}\right)$ solves the primal.
(9) Consider the functions

$$
f(x)=\frac{1}{2} x^{T} Q x-c^{T} x
$$

and

$$
f_{t}(x)=\frac{1}{2} x^{T} Q x-c^{T} x+t \phi(x)
$$

where $t>0, Q \in \mathbb{S}_{+}^{n}, c \in \mathbb{R}^{n}$, and $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ is given by

$$
\phi(x)= \begin{cases}-\sum_{i=1}^{n} \ln x_{i} & , \text { if } x_{i}>0, i=1,2, \ldots, n \\ +\infty & , \text { otherwise }\end{cases}
$$

(a) Show that ϕ is a convex function.
(b) Show that both f and f_{t} are convex functions.
(c) Show that the solution to the problem $\min f_{t}(x)$ always exists and is unique.
(d) Let $\left\{t_{i}\right\}$ be a decreasing sequence of positive real scalars with $t_{i} \downarrow 0$, and let x^{i} be the solution to the problem $\min f_{t_{i}}(x)$. Show that if the sequence $\left\{x^{i}\right\}$ has a cluster point \bar{x}, then \bar{x} must be a solution to the problem $\min \{f(x): 0 \leq x\}$.
Hint: Use the KKT conditions for the QP $\min \{f(x): 0 \leq x\}$.

Solution

(a) $\nabla^{2} \phi(x)=\operatorname{diag}(x)^{-2}$ which is positive definite on \mathbb{R}_{++}^{n}.
(b) $\nabla^{2} f(x)=Q$ which is positive definite. The result follows from (a) and the fact that the sum of two convex functions is convex.
(c) The sum of a symmetric positive definite and symmetric positive semi-definite matrix is symmetric and positive definite. So ∇f_{t} is everywhere positive definite which implies that f_{t} is strictly convex. Hence if a solution exists, it must be unique.
(d) For all $i=1,2, \ldots$, we have $0=\nabla f_{t_{i}}\left(x^{i}\right)=Q x^{i}-c-t_{i} \operatorname{diag}\left(x^{i}\right)^{-1} \mathbf{1}$, where $\mathbf{1}$ is the vector of all ones. Without loss of generality we can assume that $x^{i} \rightarrow \bar{x}$. Set $\bar{v}:=Q \bar{x}-c$ so that $t_{i} \operatorname{diag}\left(x^{i}\right)^{-1} \mathbf{1}=Q x^{i}-c \rightarrow \bar{v} \geq 0$. Observe that $\bar{v}^{T} \bar{x}=\lim _{i} t_{i} \mathbf{1}^{T} \operatorname{diag}\left(x^{i}\right)^{-1} x^{i}=\lim _{i} t_{i} n=0$. Hence (\bar{x}, \bar{v}) is a KKT pair for the convex optimization problem $\min \{f(x) \mid 0 \leq x\}$ which implies that \bar{x} must be a solution to this problem.

