
Math 408 Homework Set 6 Solutions

(1) Show that the functions

f(x1, x2) = x2
1 + x3

2, and g(x1, x2) = x2
1 + x4

2

both have a critical point at (x1, x2) = (0, 0) and that their associated Hessians are positive semi-
definite. Then show that (0, 0) is a local (global) minimizer for g and not for f .

Solution
Both f and g are completely separable, i.e. they are the sum of functions of the components
and have the form h(x) =

∑n
i=1 hi(xi). The origin is the unique critical point for both functions.

However,

∇2f(x1, x2) =

[
2 0
0 6x2

]
∇2g(x1, x2) =

[
2 0
0 12x2

2

]
.

Clearly, ∇2f is not positive semi-definite for x2 < 0, so f is not minimized at the origin, while ∇2g
is everywhere positive definite away from the origin and positive semidefinite at the origin. Thus,
f has no local (global) optima, while the origin is a global minimizer of g.

(2) Find the local minimizers and maximizers for the following functions if they exist:
(a) f(x) = x2 + cosx
(b) f(x1, x2) = x2

1 − 4x1 + 2x2
2 + 7

(c) f(x1, x2) = e−(x21+x22)

(d) f(x1, x2, x3) = (2x1 − x2)2 + (x2 − x3)2 + (x3 − 1)2

Solution
(a) x = 0 is local (global) minimizer;
(b) (x1, x2)T = (2, 0)T is local (global) minizer;
(c) (x1, x2) = (0, 0) is local (global) maximizer;
(d) (x1, x2, x3) = (1

2
, 1, 1) is local (global) minimizer.

(3) Compute the directional derivative for each of the following functions at the origin.
(a) f(x) = max{0, x}
(b) f(x) = max{−x, 2x}
(c) f(x1, x2) = |x1| − |x2|

Solution:
(a)

f ′(x; d) =

{
d , x > 0 or (x = 0 and d > 0),

0 , x < 0 or (x = 0 and d ≤ 0).

(b)

f ′(x; d) =

{
2d , x > 0 or (x = 0 and d > 0),

−d , x < 0 or (x = 0 and d ≤ 0).
1



(c)

f ′(x; d) =


d1 − d2 , (x1 > 0, x2 > 0) ∧ (x1 = 0, x2 > 0, d1 ≥ 0) ∧ (x1 > 0, x2 = 0, d2 ≥ 0) ∧ (xi = 0, di ≥ 0, i = 1, 2),

d1 + d2 , (x1 > 0, x2 < 0) ∧ (x1 = 0, x2 < 0, d1 ≥ 0) ∧ (x1 > 0, x2 = 0, d2 ≤ 0) ∧ (xi = 0, d1 ≥ 0, d2 ≤ 0),

−d1 − d2 , (x1 < 0, x2 > 0) ∧ (x1 = 0, x2 > 0, d1 ≤ 0) ∧ (x1 < 0, x2 = 0, d2 ≥ 0) ∧ (xi = 0, d1 ≤ 0, d2 ≥ 0),

−d1 + d2 , (x1 < 0, x2 < 0) ∧ (x1 = 0, x2 < 0, d1 ≤ 0) ∧ (x1 > 0, x2 = 0, d2 ≤ 0) ∧ (xi = 0, di ≤ 0, i = 1, 2).

(4) Show that the function f(x) := 1
2
(max{0, x})2 is differentiable at the origin and give its derivative.

Solution: Simply note that f is differentiable at any point x 6= 0 so f ′(x) = 0 for x > 0 and
f ′(x) = x for x > 0. The only difficulty occurs at x = 0. In this case just observe that

0 = lim
∆x↓0

1

2
∆x = lim

∆x↓0

f(∆x)− f(0)

∆x

and

0 = lim
∆x↑0

f(∆x)− f(0)

∆x
,

so that the derivative at x = 0 is zero. Hence, f ′(x) = max{0, x}.

(5) Let C ⊂ Rn and x ∈ C and recall the definition of the tangent cone to C at x:

TC(x) :=
{
u
∣∣∃ {xν} ⊂ C, xν → x, tν ↓ 0, with t−1

ν (xν − x)→ u
}
.

(a) Let B2 = {u |‖u‖2 ≤ 1}. Show that for all u ∈ B2 with ‖u‖2 = 1,

TB2(u) =
{
v
∣∣uTv ≤ 0

}
.

Solution: Set c(x) := ‖x‖2
2 =

∑n
i=1 x

2
i so that ∇c(x) = x. In this case the set C is B2 =

{x |c(x) ≤ 1}. Since this representation for B2 satisfies the LICQ for all x ∈ B2 \{0}, we know
that for every u ∈ B2 with ‖u‖2 = 1 satisfies TB2(u) =

{
v
∣∣〈u, v〉 = ∇c(u)Tv ≤ 0

}
.

(b) Consider the continuous function

f(x) :=

{
−
√
‖x‖2

2 − 1 , if ‖x‖2 ≥ 1, and

0 , if ‖x‖2 < 1.

Obviously, B2 = argmin {f(x) |x ∈ B2}, since f is identically zero on B2. Let ‖u‖2 = 1 = ‖v‖2

with uTv = 0 so that v ∈ TB2(u). Show that f ′(u; v) exists with f ′(u; v) = −1, where

f ′(u; v) := lim
t↓0

f(u+ tv)− f(u)

t
.

Solution: f ′(u; v) := limt↓0
−
√
‖u+tv‖22−1+

√
‖u‖22−1

t
= limt↓0

−
√
t〈u,v〉+t2‖v‖22

t
= limt↓0− |t|t = −1.



(c) Let h : Rn → R be continuously differentiable and let S ⊂ Rn. Recall from Theorem 4.2
in Chapter 4 of the course notes that if x̄ ∈ argmin {h(x) |x ∈ S }, then h′(x̄; d) ≥ 0 for all
d ∈ TS(x̄). Does this result contradict your finding in part (5b)? If not, why not?

Solution: On the surface it would appear that the optimization problem above violates the
theorem since the theorem states that f ′(x : d) ≥ 0 ∀ d ∈ TΩ(x) whenever x ∈ argmin {f(x) |x ∈ Ω}.
However, the theorem requires that f be continuously differentiable at the point x. The func-
tion defined above is not differentiable on the boundary of the unit ball B2.

(6) Show that the representation of the set Ω := {x ∈ R2| − x3
1 ≤ x2 ≤ x3

1} is not regular at the origin.
Can you suggest an alternative representation that is regular at the origin?

Solution: TΩ(0, 0) = {0} × R+ while{
d
∣∣∇f1(0, 0)Td ≤ 0 and ∇f1(0, 0)Td ≤ 0

}
= {0} × R ,

where f1(x1, x2) = −(x3
1 + x2) and f2(x1, x2) = x2 − x3

1.

(7) Let Ω be given the representation Ω := {x ∈ R2 |x2 ≤ 0, −x2 ≤ 0} and consider the optimization
problem min {x2

1 |x ∈ Ω}. Show that the unique global minimzer of this problem satisfies the
MFCQ but not the LICQ. Also, compute the set of KKT multipliers for this global solution.

Solution: Observe that Ω =
{

(x1, x2)T |x2 = 0
}

so that (x1, x2)T = (0, 0)T is the global optimal

solution. Let c1(x) = x2 and c2(x) = −x2 so that ∇c1(x) = (0, 1)T and ∇c2(x) = (0,−1)T . Since
∇c1(x) and ∇c2(x) are nowhere linearly independent, the LICQ cannot hold anywhere. On the
other hand, the MFCQ is satisfied everywhere.

(8) Locate all of the KKT points for the following problems. Can you show that these points are local
solutions? Global solutions?
(a)

minimize e(x1−x2)

subject to ex1 + ex2 ≤ 20
0 ≤ x1

Solution: This is convex problem so any local solution is a global solution. Obviously, we
wish to make x1 as small as possible and x2 as big as possible. Hence, we must have x1 = 0
which gives the solution (x1, x2) = (0, ln(20 − 1)). By plugging this solution into the KKT
conditions, we obtain the multipliers (y1, y2) = (1, 2)/19.

(b)

minimize e(−x1+x2)

subject to ex1 + ex2 ≤ 20
0 ≤ x1

Solution: Here we want to make x1 as big as possible and x2 as small as possible. By fixing
x + 1 at zero and sending x2 to −∞, the constraints are satisfied and the objective goes to
zero. Hence, no solution exists and the optimal value is 0.

(c)

minimize x2
1 + x2

2 − 4x1 − 4x2

subject to x2
1 ≤ x2

x1 + x2 ≤ 2

Solution: This is a convex optimization problem and so any KKT point will give global
optimality. Check that (x1, x2) = (1, 1) and (y1, y2) = (0, 2) is a KKT pair for this problem.



(d)
minimize 1

2
‖x‖2

2

subject to Ax = b

where b ∈ Rm and A ∈ Rm×n satisfies Nul (AT ) = {0}.
Solution: This is a convex problem so x̄ is a solution if and only if there is a ȳ such that
(x̄, ȳ) is a KKT pair for this problem. The Lagrangian is L(x, y) = 1

2
‖x‖2

2 + yT (b− Ax). The
KKT conditions are Ax̄ = b and x̄ = AT ȳ. Hence b = Ax̄ = AAT ȳ. Since Nul (AT ) = {0},
Nul (AAT ) = {0} so that the matrix AAT is invertible. Consequently, ȳ = (AAT )−1b and
x̄ = AT ȳ = AT (AAT )−1b.

(9) Suppose Ω = {x ; Ax ≤ b, Ex = h} where A ∈ Rm×, E ∈ Rk×n, b ∈ Rm, and h ∈ Rk.
(a) Given x ∈ Ω, show that

TΩ(x) = {d : Ai·d ≤ 0 for i ∈ I(x), Ed = 0},
where Ai· denotes the ith row of the matrix A and I(x) = {i Ai·x = bi}.
Solution: It was shown in class (see page 3 of the course notes Optimality Conditions for
Constrained Problems) that

(♠) TΩ(x) ⊂ {d : Ai·d ≤ 0 for i ∈ I(x), Ed = 0},
so we need only show the reverse inclusion. Let x ∈ Ω and d be and element of the set of the
right hand side of (♠). Note that by continuity there is a t̄ > 0 such that x + td ∈ Ω for all
0 ≤ t ≤ t̄. Hence d ∈ TΩ(x).

(b) Given x ∈ Ω, show that every d ∈ TΩ(x) is a feasible direction for Ω at x.

Solution: This is what we showed in the answer to the previous question.

(c) Note that parts (a) and (b) above show that

TΩ(x) =
⋃
λ>0

λ(Ω− x)

whenever Ω is a convex polyhedral set. Why?

Solution: Because every polyhedral convex set canb be given a representation

Ω = {x ; Ax ≤ b, Ex = h} .


