Math 408

Homework Set 5

(1) Let $Q \in \mathbb{R}^{n \times n}$ be symmetric and positive definite, and let $d_{1}, d_{2}, \ldots, d_{n} \in \mathbb{R}^{n}$ be a basis of Q-conjugate vectors. Show that

$$
Q^{-1}=\sum_{i=1}^{n} \frac{d_{i} d_{i}^{T}}{d_{i}^{T} Q d_{i}}
$$

(2) Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$, and suppose that $\operatorname{Nul}(A)=\{0\}$. Consider the function

$$
f(x):=\frac{1}{2}\|A x-b\|_{2}^{2}
$$

Show how to apply the CG algorithm to minimize f on \mathbb{R}^{n} under the assumption that A is not available but $A x$ and $A^{T} y$ can be obtained for arbitrary vectors $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{m}$, respectively.
(3) Apply the conjugate gradient algorithm initialized at $x^{0}=(0,0,0)^{T}$ to solve the problem $\min _{x \in \mathbb{R}^{3}} \frac{1}{2} x^{T} H x+g^{T} x$, where

$$
H=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right] \quad \text { and } \quad g=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$$

(4) Let $f(x):=\frac{1}{2} x^{T} H x+g^{T} x$, where $H \in \mathcal{S}_{++}^{n}$ and $g \in \mathbb{R}^{n}$. Let $\left\{x^{0}, \ldots, x^{n}\right\}$ be the iterates of the conjugate gradient algorithm applied to f initiated at $x^{0}=0$.
(a) Show that $f\left(x^{k}\right)-f\left(x^{k+1}\right)=\frac{1}{2} \frac{\left.\left\langle g^{k}, d^{k}\right\rangle\right)^{2}}{\left\langle H d^{k}, d^{k}\right\rangle}$, which establishes that $f\left(x^{k}\right)>f\left(x^{k+1}\right)$ whenever $d^{k} \neq 0$.
(b) Show that the sequence $\left\{\beta_{k}\right\}$ generated by the CG-algorithm satisfies $\beta_{k}=\frac{\left\langle g^{k+1}, g^{k+1}-g^{k}\right\rangle}{\left\|g^{k}\right\|^{2}}$.
(5) Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$, and consider the function

$$
f(x):=\frac{1}{2}\|A x-b\|_{2}^{2}
$$

Show that $\nabla f(x)=A^{T}(A x-b)$ and $\nabla^{2} f(x)=A^{T} A$.
(6) Let $f(x):=\frac{1}{2} x^{T} H x+g^{T} x$, where $H \in \mathbb{R}^{n \times n}$ and $g \in \mathbb{R}^{n}$.
(a) Show that $\nabla f(x)=\frac{1}{2}\left(H+H^{T}\right) x+g$ so that if $H \in \mathcal{S}^{n}$, then $\nabla f(x)=H x+g$.
(b) Show that $\nabla^{2} f(x)=\frac{1}{2}\left(H+H^{T}\right)$ so that if $H \in \mathcal{S}^{n}$, then $\nabla^{2} f(x)=H$.
(7) Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a smooth function (has as many continuous derivatives as you want), and define $f(x):=\frac{1}{2}\|F(x)\|_{2}^{2}$.
(a) Show that $\nabla f(x)=\nabla F(x)^{T} F(x)$.
(b) Show that $\nabla^{2} f(x)=\nabla F(x)^{T} \nabla F(x)+\sum_{j=1}^{m} F_{j}(x) \nabla^{2} F_{j}(x)$, where $F_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are the component functions of $F, j=1, \ldots, m$.
(8) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be twice continuously differentiable, $V \in \mathbb{R}^{n \times k}$, and $\hat{x} \in \mathbb{R}^{n}$, where $k<n$. Consider the function given by $h(z):=f(\hat{x}+V z)$.
(a) Show that $\nabla h(z)=V^{T} \nabla f(\hat{x}+V z)$.
(b) Show that if \bar{z} is a local solution to $\min _{z} h(z)$, then $\nabla f(\bar{z}) \perp \operatorname{Ran}(V)$.
(c) Let S be a subspace of \mathbb{R}^{n}. Show that if $\bar{x} \in \hat{x}+S$ solves min $\{f(x) \mid x \in \hat{x}+S\}$, then $\nabla f(\bar{x}) \perp S$.

