(1) Let $Q \in \mathbb{R}^{n \times n}$ be symmetric and positive definite, and let $d_{1}, d_{2}, \ldots, d_{n} \in \mathbb{R}^{n}$ be a basis of Q-conjugate vectors. Show that

$$
Q^{-1}=\sum_{i=1}^{n} \frac{d_{i} d_{i}^{T}}{d_{i}^{T} Q d_{i}}
$$

Solution: Let $M:=\sum_{i=1}^{n} \frac{d_{i} d_{i}^{T}}{d_{i}^{T} Q d_{i}}$. Then, for every $x \in \mathbb{R}^{n}$, we have $x=\sum_{j=1}^{n} \lambda_{j} d_{j}$ for a unique set of coefficients $\lambda_{1}, \ldots, \lambda_{n}$ since $d_{1}, d_{2}, \ldots, d_{n}$ for a basis of \mathbb{R}^{n}. But then
$M x=\sum_{i=1}^{n} \frac{d_{i}}{d_{i}^{T} Q d_{i}}\left(d_{i} Q \sum_{j=1}^{n} \lambda_{j} d_{j}\right)=\sum_{i=1}^{n} \frac{d_{i}}{d_{i}^{T} Q d_{i}}\left(\sum_{j=1}^{n} \lambda_{j} d_{i} Q d_{j}\right)=\sum_{i=1}^{n} \frac{d_{i}}{d_{i}^{T} Q d_{i}} \lambda_{i} d_{i} Q d_{i}=\sum_{j=1}^{n} \lambda_{j} d_{j}=x$,
which implies that $M=Q^{-1}$.
(2) Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$, and suppose that $\operatorname{Nul}(A)=\{0\}$. Consider the function

$$
f(x):=\frac{1}{2}\|A x-b\|_{2}^{2}
$$

Show how to apply the CG algorithm to minimize f on \mathbb{R}^{n} under the assumption that A is not available but $A x$ and $A^{T} y$ can be obtained for arbitrary vectors $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{m}$, respectively.

Solution:

Initialization: $x_{0} \in \mathbb{R}^{n}, r_{0}=A x_{0}-b, d_{0}=-g_{0}=-A^{T} r_{0}$.
For $k=0,1,2, \ldots$.

$$
\begin{array}{ll}
\alpha_{k} & :=-r_{k}^{T} A d_{k} /\left\|A d_{k}\right\|_{2}^{2} \\
x_{k+1} & :=x_{k}+\alpha_{k} d_{k} \\
r_{k+1} & \left.:=A x_{k+1}-b \quad \quad \quad \quad \text { STOP if } g_{k+1}=0\right) \\
g_{k+1} & :=A^{T} r_{k+1} \quad:=\left(A g_{k+1}\right)^{T}\left(A d_{k}\right) /\left\|A d_{k}\right\|_{2}^{2} \\
\beta_{k} & : \beta_{k} d_{k} \\
d_{k+1} & :=-g_{k+1}+\beta_{k} d_{k} \\
k & :=k+1 .
\end{array}
$$

(3) Apply the conjugate gradient algorithm initialized at $x^{0}=(0,0,0)^{T}$ to solve the problem $\min _{x \in \mathbb{R}^{3}} \frac{1}{2} x^{T} H x+g^{T} x$, where

$$
H=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right] \quad \text { and } \quad g=\left[\begin{array}{c}
1 \\
2 \\
1
\end{array}\right]
$$

Solution: Later.
(4) Let $f(x):=\frac{1}{2} x^{T} H x+g^{T} x$, where $H \in \mathcal{S}_{++}^{n}$ and $g \in \mathbb{R}^{n}$. Let $\left\{x^{0}, \ldots, x^{n}\right\}$ be the iterates of the conjugate gradient algorithm applied to f initiated at $x^{0}=0$.
(a) Show that $f\left(x^{k}\right)-f\left(x^{k+1}\right)=\frac{1}{2} \frac{\left\langle g^{k}, d^{k}\right\rangle^{2}}{\left\langle H d^{k}, d^{k}\right\rangle}$, which establishes that $f\left(x^{k}\right)>f\left(x^{k+1}\right)$ whenever $d^{k} \neq 0$.
Solution: Since $t_{k}=-\frac{\left\langle g^{k}, d^{k}\right\rangle}{\left(d^{k}\right)^{T} H d^{k}}$, we have

$$
f\left(x^{k+1}\right)=f\left(x^{k}\right)+t_{k}\left\langle g^{k}, d^{k}\right\rangle+\frac{t_{k}^{2}}{2}\left(d^{k}\right)^{T} H d^{k}=f\left(x^{k}\right)-\frac{\left\langle g^{k}, d^{k}\right\rangle^{2}}{\left(d^{k}\right)^{T} H d^{k}}
$$

(b) Show that the sequence $\left\{\beta_{k}\right\}$ generated by the CG-algorithm satisfies $\beta_{k}=\frac{\left\langle g^{k+1}, g^{k+1}-g^{k}\right\rangle}{\left\|g^{k}\right\|^{2}}$.

Solution:

$$
\begin{aligned}
\beta_{k} & =\frac{\left\langle g^{k+1}, H d^{k}\right\rangle}{\left\langle d^{k}, H d^{k}\right\rangle}=\frac{\left\langle g^{k+1}, t_{k}^{-1} H\left(x^{k+1}-x^{k}\right)\right\rangle}{\left\langle d^{k}, H d^{k}\right\rangle} \\
& =\frac{\left.\left\langle g^{k+1},\left(H x^{k+1}+g\right)-\left(H x^{k}+g\right)\right)\right\rangle}{\left\langle-g^{k}, d^{k}\right\rangle}=\frac{\left\langle g^{k+1}, g^{k+1}-g^{k}\right\rangle}{\left\langle-g^{k},-g^{k}+\beta_{k-1} d^{k-1}\right\rangle} \\
& =\frac{\left\langle g^{k+1}, g^{k+1}-g^{k}\right\rangle}{\left\langle g^{k}, g^{k}\right\rangle} .
\end{aligned}
$$

(5) Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$, and consider the function

$$
f(x):=\frac{1}{2}\|A x-b\|_{2}^{2} .
$$

Show that $\nabla f(x)=A^{T}(A x-b)$ and $\nabla^{2} f(x)=A^{T} A$.

Solution:

$$
\begin{aligned}
f(x+\Delta x) & =\frac{1}{2}\|A(x+\Delta x)-b\|_{2}^{2} \\
& \left.=\frac{1}{2} \|(A x-b)+A \Delta x\right)-b \|_{2}^{2} \\
& =\frac{1}{2}\|A x-b\|_{2}^{2}+\left\langle A^{T}(A x-b), \Delta x\right\rangle+\frac{1}{2}\|A \Delta\|^{2} \\
& =f(x)+\left\langle A^{T}(A x-b), \Delta x\right\rangle+\frac{1}{2}(\Delta x)^{T}\left(A^{T} A\right)(\Delta x)
\end{aligned}
$$

(6) Let $f(x):=\frac{1}{2} x^{T} H x+g^{T} x$, where $H \in \mathbb{R}^{n \times n}$ and $g \in \mathbb{R}^{n}$.
(a) Show that $\nabla f(x)=\frac{1}{2}\left(H+H^{T}\right) x+g$ so that if $H \in \mathcal{S}^{n}$, then $\nabla f(x)=H x+g$.
(b) Show that $\nabla^{2} f(x)=\frac{1}{2}\left(H+H^{T}\right)$ so that if $H \in \mathcal{S}^{n}$, then $\nabla^{2} f(x)=H$.

Solution:

$$
\begin{aligned}
f(x+\Delta x) & =\frac{1}{2}(x+\Delta x)^{T} H(x+\Delta x)+g^{T}(x+\Delta x) \\
& =f(x)+\frac{1}{2}\left((\Delta x)^{T} H x+x^{T} H \Delta x\right)+g^{T} \Delta x+\frac{1}{2}(\Delta x)^{T} H \Delta x \\
& \left.=f(x)+\left\langle\frac{1}{2}\left(H+H^{T}\right) x+g\right), \Delta x\right\rangle+(\Delta x)^{T}\left(\frac{1}{2}\left(H+H^{T}\right)\right) \Delta x
\end{aligned}
$$

(7) Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a smooth function (has as many continuous derivatives as you want), and define $f(x):=\frac{1}{2}\|F(x)\|_{2}^{2}$.
(a) Show that $\nabla f(x)=\nabla F(x)^{T} F(x)$.
(b) Show that $\nabla^{2} f(x)=\nabla F(x)^{T} \nabla F(x)+\sum_{j=1}^{m} F_{j}(x) \nabla^{2} F_{j}(x)$, where $F_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are the component functions of $F, j=1, \ldots, m$.
Solution: Let F_{i} be the $\mathrm{i}^{\text {th }}$ component function of F so that $f(x)=\frac{1}{2} \sum_{j=1}^{m}\left(F_{i}(x)\right)^{2}$. For each $j=1, \ldots, m$, we have

$$
F_{i}(x+\Delta x)=F(x)+\nabla F_{i}(x)^{T} \Delta x+\frac{1}{2} \Delta x^{T} \nabla^{2} F_{i}(x) \Delta x+o\left(\|\Delta x\|^{2}\right)
$$

Hence,

$$
\frac{1}{2}\left(F_{i}(x+\Delta x)\right)^{2}=\frac{1}{2}\left(F_{i}(x)\right)^{2}+\left\langle F_{i}(x) \nabla F_{i}(x), \Delta x\right\rangle+\frac{1}{2} \Delta x^{T}\left(\nabla F_{i}(x) \nabla F_{i}(x)^{T}+F_{i}(x) \nabla^{2} F_{i}(x)\right) \Delta x+o\left(\|\Delta x\|^{2}\right)
$$

Consequently,

$$
\begin{aligned}
f(x+\Delta x) & =\frac{1}{2} \sum_{j=1}^{m}\left(F_{i}(x+\Delta x)\right)^{2} \\
& =\sum_{j=1}^{m} \frac{1}{2}\left(F_{i}(x)\right)^{2}+\left\langle F_{i}(x) \nabla F_{i}(x), \Delta x\right\rangle+\frac{1}{2} \Delta x^{T}\left(\nabla F_{i}(x) \nabla F_{i}(x)^{T}+F_{i}(x) \nabla^{2} F_{i}(x)\right) \Delta x+o\left(\|\Delta x\|^{2}\right) \\
& =f(x)+\left\langle\nabla F(x)^{T} F(x), \Delta x\right\rangle+\frac{1}{2} \Delta x^{T}\left(\nabla F(x)^{T} \nabla F(x)+\sum_{j=1}^{m} F_{i}(x) \nabla^{2} F_{i}(x)\right) \Delta x+o\left(\|\Delta x\|^{2}\right)
\end{aligned}
$$

since

$$
\nabla F(x)=\left[\begin{array}{c}
\nabla F_{1}(x)^{T} \\
\nabla F_{2}(x)^{T} \\
\vdots \\
\nabla F_{m}(x)^{T}
\end{array}\right] \text { so that } \quad \nabla F(x)^{T} \nabla F(x)=\sum_{j=1}^{m} \nabla F_{i}(x) \nabla F_{i}(x)^{T}
$$

(8) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be twice continuously differentiable, $V \in \mathbb{R}^{n \times k}$, and $\hat{x} \in \mathbb{R}^{n}$, where $k<n$. Consider the function given by $h(z):=f(\hat{x}+V z)$.
(a) Show that $\nabla h(z)=V^{T} \nabla f(\hat{x}+V z)$.

Solution:

$$
\begin{aligned}
h(z+\Delta z) & =f(\hat{x}+V(z \Delta z))=f((\hat{x}+V z)+V \Delta z) \\
& =f(\hat{x})+\langle\nabla f(\hat{x}+V z), V \Delta z\rangle+o(\|V \Delta z\|) \\
& =f(\hat{x})+\left\langle V^{T} \nabla f(\hat{x}+V z), \Delta z\right\rangle+o(\|\Delta z\|) .
\end{aligned}
$$

(b) Show that if \bar{z} is a local solution to $\min _{z} h(z)$, then $\nabla f(\hat{x}+V \bar{z}) \perp \operatorname{Ran}(V)$.

Solution: If \bar{z} is a local solution to $\min _{z} h(z)$, then $0=\nabla h(\bar{z})=V^{T} \nabla f(\hat{x}+V \bar{z})$, or equivalently, $\nabla f(\hat{x}+V \bar{z}) \in \operatorname{Nul}\left(V^{T}\right)=\operatorname{Ran}(V)^{\perp}$.
(c) Let S be a subspace of \mathbb{R}^{n}. Show that if $\bar{x} \in \hat{x}+S$ solves $\min \{f(x) \mid x \in \hat{x}+S\}$, then $\nabla f(\bar{x}) \perp S$.
Solution: Let the columns of the matrix $V \in \mathbb{R}^{n \times k}$ form a basis for the subspace S where $k=\operatorname{dim} S$. Then the problem $\min \{f(x) \mid x \in \hat{x}+S\}$ is equivalent to the problem $\min _{z} f(\hat{x}+V z)$. By part (b), we have $\nabla f(\bar{x}) \perp \operatorname{Ran}(V)=S$.

