Math 408

Homework Set 5

- (1) (Orthogonal Projections) A matrix $P \in \mathbb{R}^{n \times n}$ is said to be a projection if $P^2 = P$. It is said to be an orthogonal projection with respect to the inner product $\langle \cdot, \cdot \rangle$ if $P^2 = P$ and $\langle (I - P)x, Py \rangle = 0$ for all $x, y \in \mathbb{R}^n$.
 - (a) Show that for every $x \in \text{Ran}(P)$, Px = x. For this reason we say that P projects on the subspace Ran(P).
 - (b) Show that the projection P is an orthogonal projection (wrt the usual inner product) if and only if $P^T = P$.
 - (c) If P is an orthogonal projection, show that Q = I P is the orthogonal projection onto $\operatorname{Ran}(P)^{\perp}$.
 - (d) If P is an orthogonal projection (wrt the usual inner product), show that

$$||x||_2^2 = ||Px||_2^2 + ||(I-P)x||_2^2 \quad \forall \ x \in \mathbb{R}^n .$$

- (e) Let $A \in \mathbb{R}^{m \times n}$ be such that Nul $(A) = \{0\}$. Show that $(A^T A)^{-1}$ exists and that the orthogonal projection onto Ran(A) is given by $P = A(A^T A)^{-1}A^T$.
- (f) Let $A \in \mathbb{R}^{m \times n}$ be such that Ran $(A) = \mathbb{R}^m$. Show that $(AA^T)^{-1}$ exists and that the orthogonal projection onto Nul (A) is given by $Q = I A^T (AA^T)^{-1} A$.
- (g) Let $A \in \mathbb{R}^{m \times n}$ be such that Nul $(A) = \{0\}$, and let $P = A(A^T A)^{-1} A^T$. Show that

$$\frac{1}{2} \| (I - P)b \|_2^2 = \min_{x \in \mathbb{R}^n} \frac{1}{2} \| Ax - b \|_2^2$$

(h) ** Let $A \in \mathbb{R}^{m \times n}$ be such that $\operatorname{Ran}(A) = \mathbb{R}^m$ and set $P = A^T (AA^T)^{-1}A$. Show that $Px^0 = A^T (AA^T)^{-1}b$ for every $x^0 \in \mathbb{R}^n$ satisfying $Ax^0 = b$ and that $\hat{x} := A^T (AA^T)^{-1}b$ is the unique solution to the problem

$$\min \frac{1}{2} \|x\|_2^2 \quad \text{subject to} \quad Ax = b \; .$$

(2) (Best approximation on the linear span of a finite collection of basis functions) Let $f_j : \mathbb{R} \to \mathbb{R}$ j = 1, 2, ..., n be a collection of known functions and let $S := \text{Span}[f_1, f_2, ..., f_n]$ be the linear span of these functions. Given data $\{(x_i, y_i) | i = 1, 2, ..., m\}$, one can ask which function in S "best" fits this data. If we measure "best" in the sense of the 2-norm, then the answer to this question is given by solving the problem

$$\min_{f \in S} \frac{1}{2} \sum_{i=1}^{m} (y_i - f(x_i))^2$$

Show that this problem can be recast as a linear least squares problem. Hint: What if $f_i(x) = x^j$?