(1) Let H, A, and b be as above and define $\ell: \mathbb{R}^{k} \rightarrow \mathbb{R}$ by

$$
\ell(x):=\frac{1}{2}(A x-b)^{T} Q(A x-b)
$$

and consider the optimization problem

$$
\mathcal{Q}-\mathcal{L L S} \quad \min _{x \in \mathbb{R}^{n}} \frac{1}{2}(A x-b)^{T} Q(A x-b)
$$

(a) Give necessary and sufficient conditions under which the optimization problem $\mathcal{Q}-\mathcal{L} \mathcal{L}$ has a global optimal solution.
(b) If Q is positive definite, show that $\mathcal{Q}-\mathcal{L} \mathcal{L S}$ is equivalent to a linear least squares problem.
(c) Give a necessary and sufficient condition under which $\mathcal{Q}-\mathcal{L} \mathcal{L} \mathcal{S}$ has a unique global optimal solution.
(2) Determine whether the following matrices are positive definite, positive semi-definite, or neither by attempting to compute their Choleski factorizations.

$$
\begin{array}{ll}
\text { (a) } H=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right] & \text { (b) } H=\left[\begin{array}{ccc}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & -2
\end{array}\right] \\
\text { (c) } H=\left[\begin{array}{ccc}
5 & 2 & -1 \\
2 & 1 & -1 \\
-1 & -1 & 2
\end{array}\right] & \text { (d) } H=\left[\begin{array}{ccc}
1 & 4 & 1 \\
4 & 20 & 2 \\
1 & 2 & 2
\end{array}\right]
\end{array}
$$

(3) Consider the linearly constrained quadratic optimization problem

$$
\begin{array}{lll}
\mathcal{Q}(H, g, A, b) & \text { minimize } \quad \frac{1}{2} x^{T} H x+g^{T} x \\
& \text { subject to } A x=b
\end{array}
$$

where $H \in \mathbb{R}^{n \times n}$ is symmetric an positive definite and $A \in \mathbb{R}^{m \times n}$ has $\operatorname{rank}(A)=m$.
(a) Write necessary and sufficient optimality conditions for this problem at a pair $(\bar{x}, \bar{y}) \in$ $\mathbb{R}^{n} \times \mathbb{R}^{m}$ where \bar{y} is an Lagrange multiplier vector.
(b) Solve the problem $\mathcal{Q}(H, g, A, b)$ with

$$
H=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 3
\end{array}\right], g=(1,1,1)^{T}, b=(4,2)^{T}, \quad \text { and } \quad A=\left[\begin{array}{ccc}
1 & 2 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

(c) Solve the problem $\mathcal{Q}(H, g, A, b)$ with $g=0, m=1, b=\mu \in \mathbb{R}$, and $A=\mathbf{1}_{n}^{T}$, where $\mathbf{1}_{n} \in \mathbb{R}^{n}$ is the vector of all ones.
(d) Show that the matrix $A H^{-1} A^{T}$ is invertible.
(e) Show that $\bar{y}=-\left(A H^{-1} A^{T}\right)^{-1}\left(A H^{-1} g+b\right)$.
(f) Show that $\bar{x}=-\left[H^{-1}-H^{-1} A^{T}\left(A H^{-1} A^{T}\right)^{-1} A H^{-1}\right] g+H^{-1} A^{T}\left(A H^{-1} A^{T}\right)^{-1} b$.
(g) Show that

$$
\left[\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right]^{-1}=\left[\begin{array}{cc}
{\left[H^{-1}-H^{-1} A^{T}\left(A H^{-1} A^{T}\right)^{-1} A H^{-1}\right]} & H^{-1} A^{T}\left(A H^{-1} A^{T}\right)^{-1} \\
\left(A H^{-1} A^{T}\right)^{-1} A H^{-1} & -\left(A H^{-1} A^{T}\right)^{-1}
\end{array}\right] .
$$

(4) Prove Proposition 2.1 in Chapter 3.
(5) Prove Part (5) of Theorem 2.1 in Chapter 3 on the course notes.
(6) Use Lemma 3.1 Part (1) to inductively show that the only matrix in \mathcal{S}_{+}^{n} having zero diagonal is the zero matrix.
(7) Let $A \in \mathbb{R}^{m \times n}$ have rank $m<n$ and let $H \in \mathcal{S}^{n}$ be positive definite on $\operatorname{Nul}(A)$, i.e., $u^{T} H u>$ $0, \forall u \in \operatorname{Nul}(A)$. These hypotheses imply that $A A^{T}$ is invertible. Define $A^{\dagger}:=A^{T}\left(A A^{T}\right)^{-1}$. In this context the matrix A^{\dagger} is called the Moore-Penrose pseudo inverse of A.
(a) Show that the dimension of the $\operatorname{Nul}(A)$ is $n-m$.
(b) Let $U \in \mathbb{R}^{n \times(n-m)}$ be any matrix whose columns form an orthonormal basis for $\operatorname{Nul}(A)$ and show that $I-U U^{T}=A^{\dagger} A$.
(c) Show that

$$
\left[\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right]^{-1}=\left(\begin{array}{cc}
U\left(U^{T} H U\right)^{-1} U^{T} & \left(I-U\left(U^{T} H U\right)^{-1} U^{T} H\right) A^{\dagger} \\
\left(A^{\dagger}\right)^{T}\left(I-H U\left(U^{T} H U\right)^{-1} U^{T}\right) & \left(A^{\dagger}\right)^{T}\left(H U\left(U^{T} H U\right)^{-1} U^{T} H-H\right) A^{\dagger}
\end{array}\right)
$$

where $U \in \mathbb{R}^{n \times(n-p)}$ is any matrix whose columns form an orthonormal basis of ker A.

