(1) Let H, A, and b be as above and define $\ell: \mathbb{R}^{k} \rightarrow \mathbb{R}$ by

$$
\ell(x):=\frac{1}{2}(A x-b)^{T} Q(A x-b)
$$

and consider the optimization problem

$$
\mathcal{Q}-\mathcal{L} \mathcal{L S} \quad \min _{x \in \mathbb{R}^{n}} \frac{1}{2}(A x-b)^{T} Q(A x-b)
$$

(a) Give necessary and sufficient conditions under which the optimization problem $\mathcal{Q}-\mathcal{L} \mathcal{L}$ has a global optimal solution.
(b) If Q is positive definite, show that $\mathcal{Q}-\mathcal{L} \mathcal{L S}$ is equivalent to a linear least squares problem.
(c) Give a necessary and sufficient condition under which $\mathcal{Q}-\mathcal{L} \mathcal{L}$ has a unique global optimal solution.

Solution Use the expansion

$$
\frac{1}{2}(A x-b)^{T} Q(A x-b)=\frac{1}{2} x^{T} A^{T} Q A x-\left(A^{T} Q b\right)^{T} x+\frac{1}{2} b^{T} Q b
$$

and apply known results.
(2) Determine whether the following matrices are positive definite, positive semi-definite, or neither by attempting to compute their Choleski factorizations.

$$
\begin{array}{ll}
\text { (a) } H=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right] & \text { (b) } H=\left[\begin{array}{ccc}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & -2
\end{array}\right] \\
\text { (c) } H=\left[\begin{array}{ccc}
5 & 2 & -1 \\
2 & 1 & -1 \\
-1 & -1 & 2
\end{array}\right] & \text { (d) } H=\left[\begin{array}{ccc}
1 & 4 & 1 \\
4 & 20 & 2 \\
1 & 2 & 2
\end{array}\right] .
\end{array}
$$

Solution

(a) Positive definite by the determinant test. Gaussian elimination gives

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 / 3 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 / 2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]=\left[\begin{array}{ccc}
2 & 1 & 0 \\
0 & 3 / 2 & 1 \\
0 & 0 & 1 / 3
\end{array}\right]=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 3 / 2 & 0 \\
0 & 0 & 1 / 3
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 / 2 & 0 \\
0 & 1 & 2 / 3 \\
0 & 0 & 1
\end{array}\right]
$$

and so

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 / 2 & 1 & 0 \\
0 & 2 / 3 & 1
\end{array}\right]\left[\begin{array}{ccc}
\sqrt{2} & 0 & 0 \\
0 & \sqrt{3 / 2} & 0 \\
0 & 0 & \sqrt{1 / 3}
\end{array}\right] .
$$

(b) Obviously not positive definite since it has a -2 on the diagonal. Nonetheless, Gaussian elimination gives

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 / 3 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 / 2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & -2
\end{array}\right]=\left[\begin{array}{ccc}
2 & 1 & 0 \\
0 & 3 / 2 & 1 \\
0 & 0 & -8 / 3
\end{array}\right]
$$

and so the last pivot being negative implies that H is not positive semi-definite.
(c) H is positive semi-definite. Gaussian elimination gives
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ -2 / 5 & 1 & 0 \\ 1 / 5 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}5 & 2 & -1 \\ 2 & 1 & -1 \\ -1 & -1 & 2\end{array}\right]=\left[\begin{array}{ccc}5 & 2 & -1 \\ 0 & 1 / 5 & -3 / 5 \\ 0 & 0 & 0\end{array}\right]=\left[\begin{array}{ccc}5 & 0 & 0 \\ 0 & 1 / 5 & 0 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{ccc}1 & 2 / 5 & -1 / 5 \\ 0 & 1 & -3 \\ 0 & 0 & 0\end{array}\right]$
and so

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 / 5 & 1 & 0 \\
-1 / 5 & -3 & 0
\end{array}\right]\left[\begin{array}{ccc}
\sqrt{5} & 0 & 0 \\
0 & \sqrt{1 / 5} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

(d) H is positive semi-definite. Gaussian elimination gives

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 / 2 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
-4 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 4 & 1 \\
4 & 20 & 2 \\
1 & 2 & 2
\end{array}\right]=\left[\begin{array}{ccc}
1 & 4 & 1 \\
0 & 4 & -2 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 4 & 1 \\
0 & 1 & -1 / 2 \\
0 & 0 & 0
\end{array}\right]
$$

and so

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
4 & 1 & 0 \\
1 & -1 / 2 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

(3) Consider the linearly constrained quadratic optimization problem

$$
\begin{array}{lll}
\mathcal{Q}(H, g, A, b) & \text { minimize } & \frac{1}{2} x^{T} H x+g^{T} x \\
& \text { subject to } A x=b
\end{array}
$$

where $H \in \mathbb{R}^{n \times n}$ is symmetric an positive definite and $A \in \mathbb{R}^{m \times n}$ has $\operatorname{rank}(A)=m$.
(a) Write necessary and sufficient optimality conditions for this problem at a pair $(\bar{x}, \bar{y}) \in$ $\mathbb{R}^{n} \times \mathbb{R}^{m}$ where \bar{y} is an Lagrange multiplier vector.
Solution: $\left[\begin{array}{cc}H & A^{T} \\ A & 0\end{array}\right]\binom{x}{y}=\binom{-g}{b}$
(b) Solve the problem $\mathcal{Q}(H, g, A, b)$ with

$$
H=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 3
\end{array}\right], g=(1,1,1)^{T}, b=(4,2)^{T}, \quad \text { and } \quad A=\left[\begin{array}{ccc}
1 & 2 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

Solution: Apply Gaussian elimination to the augmented matrix for the system given in (a),

$$
\left[\begin{array}{rrrrr|r}
1 & 1 & 0 & 1 & 1 & -1 \\
1 & 2 & 1 & 2 & 0 & -1 \\
0 & 1 & 3 & 1 & 1 & -1 \\
1 & 2 & 2 & 0 & 0 & 4 \\
1 & 0 & 1 & 0 & 0 & 2
\end{array}\right],
$$

to obtain the solution $\bar{x}=\frac{1}{2}(3,2,1)^{T}$ and $y=-\frac{1}{2}(5,2)^{T}$.
(c) Solve the problem $\mathcal{Q}(H, g, A, b)$ with $g=0, m=1, b=\mu \in \mathbb{R}$, and $A=\mathbf{1}_{n}^{T}$, where $\mathbf{1}_{n} \in \mathbb{R}^{n}$ is the vector of all ones.
Solution: Again solve the system in part (a) to find that $x=\frac{\mu}{\mathbf{1}_{n}^{T} H \mathbf{1}_{n}} H^{-1} \mathbf{1}_{n}$ and $y=-\frac{\mu}{\mathbf{1}_{n}^{T} H 1_{n}}$.
(d) Show that the matrix $A H^{-1} A^{T}$ is invertible.

Solution: Since H is positive definite, it has a Cholesky factorization $H=L L^{T}$, where $L \in \mathbb{R}^{n \times n}$ is nonsingular. hence, $H^{-1}=L^{-T} L^{-1}$. Consequently, if $0=A H^{-1} A^{T} x=$ $A L^{-T} L^{-1} A^{T} x$, then $0=x^{T} A L^{-T} L^{-1} A^{T} x=\left\|L^{-1} A^{T} x\right\|^{2}$, so $L^{-1} A^{T} x=0$, or, equivalently, $A^{T} x=0$ (just multipl through by L). But $\operatorname{Nul}\left(A^{T}\right)=0$ since $\operatorname{rank}(A)=m$, so $x=0$. Hence $A H^{-1} A^{T}$ is invertible.
(e) Show that $\bar{y}=-\left(A H^{-1} A^{T}\right)^{-1}\left(A H^{-1} g+b\right)$.

Solution: The system in part (a) tells us that $H x+A^{T} y=-g$ and $A x=b$. Multiplying the first expression through by H^{-1} gives $x=-H^{-1}\left(A^{T} y+g\right)$. Plugging this into $A x=b$ gives $A H^{-1} A^{T} y=-\left(A H^{-1} g+b\right.$), or equivalently (by (d)) $y=-\left(A H^{-1} A^{T}\right)^{-1}\left(A H^{-1} g+\right.$ b).
(f) Show that $\bar{x}=-\left[H^{-1}-H^{-1} A^{T}\left(A H^{-1} A^{T}\right)^{-1} A H^{-1}\right] g+H^{-1} A^{T}\left(A H^{-1} A^{T}\right)^{-1} b$.

Solution: In the proof of (e) we saw that $x=-H^{-1}\left(A^{T} y+g\right)$. Plugging the expression for y into this equation for x gives the result.
(g) Show that
$\left[\begin{array}{cc}H & A^{T} \\ A & 0\end{array}\right]^{-1}=\left[\begin{array}{cc}{\left[H^{-1}-H^{-1} A^{T}\left(A H^{-1} A^{T}\right)^{-1} A H^{-1}\right]} & H^{-1} A^{T}\left(A H^{-1} A^{T}\right)^{-1} \\ \left(A H^{-1} A^{T}\right)^{-1} A H^{-1} & -\left(A H^{-1} A^{T}\right)^{-1}\end{array}\right]$.
Solution: Just do the matrix multiply.
(4) Prove Proposition 2.1 in Chapter 3.

Solution: Proposition 2.1 in Chapter 3 reads as follows:
Proposition 2.1 Consider the two problems $\mathcal{Q}(H, g, A, b)$ and

$$
\widehat{\mathcal{Q}}(H, g, A, b) \quad \text { minimize } z \in \mathbb{R}^{k} \frac{1}{2} z^{T} \widehat{H} z+\hat{g}^{T} z
$$

where $\widehat{H}:=V^{T} H V$ and $\hat{g}:=V^{T}(H \hat{x}+g)$ with \hat{x} any solution to $A x=b$ and V being any matrix whose columns form a basis for the subspace $\operatorname{Nul}(A)$. Then the sets of optimal solutions to these problems are related as follows:

$$
\{\bar{x} \mid \bar{x} \text { solves } \mathcal{Q}(H, g, A, b)\}=\{\hat{x}+V \bar{z} \mid \bar{z} \text { solves } \widehat{\mathcal{Q}}(H, g, A, b)\} .
$$

Proof. Set $f(x):=\frac{1}{2} x^{T} H x+g^{T} x$. Let \bar{x} solve $\mathcal{Q}(H, g, A, b)$. Since $A \bar{x}=b$, there is a $\bar{z} \in \mathbb{R}^{k}$ such that $\bar{x}=\hat{x}+V \bar{z}$. In addition, since $A(\hat{x}+V z)=b$ for any $x \in \mathbb{R}^{k}$, we have

$$
f(\hat{x}+V \bar{z})=f(\bar{x}) \leq f(\hat{x}+V z)
$$

Hence \bar{z} solves $\widehat{\mathcal{Q}}(H, g, A, b)$.
Conversely, suppose \bar{z} solves $\widehat{\mathcal{Q}}(H, g, A, b)$ and set $\bar{x}:=\hat{x}+V \bar{z}$. For every $x \in \mathbb{R}^{n}$ satisfying $A x=b$, there is a unique $z(x) \in \mathbb{R}^{k}$ such that $x=\hat{x}+V z(x)$ since the columns of V form a basis for $\operatorname{Nul}(A)$. Hence, for every $x \in \mathbb{R}^{n}$,

$$
f(\bar{x})=f(\hat{x}+V \bar{z}) \leq f(\hat{x}+V z(x))=f(x),
$$

and consequently \bar{x} solves $\mathcal{Q}(H, g, A, b)$.
(5) Prove Part (5) of Theorem 2.1 in Chapter 3 on the course notes.

Solution: Part (5) of Theorem 2.1 in Chapter 3 reads as follows:

Theorem 2.1 Part (5):If either there exists $\bar{u} \in S$ such that $\bar{u}^{T} H \bar{u}<0$ or there does not exist $\bar{x} \in \hat{x}+S$ such that $H \bar{x}+g \in S^{\perp}$ (or both), then

$$
-\infty=\inf _{x \in \hat{x}+S} \frac{1}{2} x^{T} H x+g^{T} x
$$

Proof. Set $f(x)=\frac{1}{2} x^{T} H x+g^{T} x$. If there is a $\bar{u} \in S$ for which $\bar{u}^{T} H \bar{u}<0$, then
$f(\hat{x}+t \bar{u})=\frac{1}{2}(\hat{x}+t \bar{u})^{T} H(\hat{x}+t \bar{u})+g^{T}(\hat{x}+t \bar{u})=\frac{t^{2}}{2} \bar{u}^{T} H \bar{u}+t(H \hat{x}+g)^{T} \bar{u}+\frac{1}{2} \hat{x}^{T} H \hat{x}$, where $(\hat{x}+t \bar{u}) \in \hat{x}+S$ for all $t \in \mathbb{R}$. Hence $f(\hat{x}+t \bar{u})^{T} H(\hat{x}+t \bar{u}) \downarrow-\infty$ as $t \uparrow+\infty$.

Next assume that H is positive semidefinite on S, but there is no $x \in \hat{x}+S$ such that $H x+g \in S^{\perp}$. If $V \in \mathbb{R}^{n \times k}$ have columns that form a basis for S, where $k=\operatorname{dim} S$. Then our assumptions are equivalent to saying that $\widehat{H}:=V^{T} H V$ is positive semidefinite and there is no solution to the equation $V^{T}(H(\hat{x}+V z)+g)=0$, i.e., $\hat{g}:=V^{T}(H \hat{x}+g) \notin \operatorname{Ran}(\widehat{H})$. Let $P \in \mathbb{R}^{k \times k}$ be the orthogonal projection onto $\operatorname{Ran}(\widehat{H})$ so that $(I-P)$ is the orthogonal projection onto $\operatorname{Ran}(\widehat{H})^{\perp}=\operatorname{Nul}(\widehat{H})$. Set $\hat{g}_{1}:=P \hat{g}$ and $\hat{g}_{2}:=(I-P) \hat{g}$ so that $\hat{g}=\hat{g}_{1}+\hat{g}_{2}$. Since $\hat{g} \notin \operatorname{Ran}(\widehat{H}), \hat{g}_{2} \neq 0$. Then, for all $t \in \mathbb{R}$, we have $x(t):=\hat{x}-t V(I-P) V^{T}(H \hat{x}+g) \in$ $\hat{x}+S$ and

$$
f(x(t))=f(\hat{x})+\frac{t^{2}}{2} \hat{g}_{2}^{T} \widehat{H} \hat{g}_{2}-t \hat{g}^{T} \hat{g}_{2}=-t\left\|\hat{g}_{2}\right\|^{2}
$$

Hence, $f(x(t)) \downarrow-\infty$ as $t \uparrow+\infty$, thereby proving the result.
(6) Use Lemma 3.1 Part (1) to inductively show that the only matrix in \mathcal{S}_{+}^{n} having zero diagonal is the zero matrix.
Solution: The proof follows by induction on the dimension n. The result is trivially true for $n=1$, so suppose it is true for dimension $k=1, \ldots, n-1$. We need to show it is true for dimension n. Let $H \in \mathcal{S}_{+}^{n}$ have zero diagonal and suppose

$$
H=\left[\begin{array}{cc}
\widehat{H} & v \\
v^{T} & 0
\end{array}\right]
$$

Clearly, \widehat{H} is positive semidefinite with zero diagonal, and so, by the induction hypothesis, $\widehat{H}=0$. Since $H \in \mathcal{S}_{+}^{n}$, Lemma 3.1 tells us that there is a vector $z \in \mathbb{R}^{n-1}$ such that $v=\widehat{H} z=0 z=0$, which proves the result.
(7) Let $A \in \mathbb{R}^{m \times n}$ have rank $m<n$ and let $H \in \mathcal{S}^{n}$ be positive definite on $\operatorname{Nul}(A)$, i.e., $u^{T} H u>$ $0, \forall u \in \operatorname{Nul}(A)$. These hypotheses imply that $A A^{T}$ is invertible. Define $A^{\dagger}:=A^{T}\left(A A^{T}\right)^{-1}$. In this context the matrix A^{\dagger} is called the Moore-Penrose pseudo inverse of A.
(a) Show that the dimension of the $\operatorname{Nul}(A)$ is $n-m$.

Solution: This is just the rank plus nullity theorem.
(b) Let $U \in \mathbb{R}^{n \times(n-m)}$ be any matrix whose columns form an orthonormal basis for $\operatorname{Nul}(A)$ and show that $I-U U^{T}=A^{\dagger} A$.
Solution: It was shown in clkass and the course notes that $U U^{T}$ is the orthogonal projector onto $\operatorname{Nul}(A)$ and consequently $I-U U^{T}$ is the orthogonal projector onto $\operatorname{Nul}(A)^{\perp}=\operatorname{Ran}\left(A^{T}\right)$. Therefore, this question asks us to show that $A^{\dagger} A$ is
the orthogonal projector onto $\operatorname{Ran}\left(A^{T}\right)$. To this end, set $Q:=A^{\dagger} A$ and note that $Q^{2}=A^{\dagger} A A^{\dagger} A=A^{T}\left(A A^{T}\right)^{-1} A A^{T}\left(A A^{T}\right)^{-1} A=A^{T}\left(A A^{T}\right)^{-1} A=A^{\dagger} A=Q$ and $Q^{T}=$ $\left(A^{\dagger} A\right)^{T}=A^{T}\left(A A^{T}\right)^{-1} A=Q$. Hence Q is the orthogonal projection onto its range. Thus, it remains only to show that $\operatorname{Ran}\left(A^{\dagger} A\right)=\operatorname{Ran}\left(A^{T}\right)$. Since $A^{\dagger} A=A^{T}\left(A A^{T}\right)^{-1} A$, it is clear that $\operatorname{Ran}\left(A^{\dagger} A\right) \subset \operatorname{Ran}\left(A^{T}\right)$. On the other hand, if $x \in \operatorname{Ran}\left(A^{T}\right)$, then there is a u such that $x=A^{T} u$. Hence, $A^{\dagger} A x=A^{\dagger} A A^{T} u=A^{T}\left(A A^{T}\right)^{-1} A A^{T} u=A^{T} u=x$. Consequently, we have the reverse inclusion $\operatorname{Ran}\left(A^{T}\right) \subset \operatorname{Ran}\left(A^{\dagger} A\right)$ which establishes the result.
(c) Show that

$$
\left[\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right]^{-1}=\left(\begin{array}{cc}
U\left(U^{T} H U\right)^{-1} U^{T} & \left(I-U\left(U^{T} H U\right)^{-1} U^{T} H\right) A^{\dagger} \\
\left(A^{\dagger}\right)^{T}\left(I-H U\left(U^{T} H U\right)^{-1} U^{T}\right) & \left(A^{\dagger}\right)^{T}\left(H U\left(U^{T} H U\right)^{-1} U^{T} H-H\right) A^{\dagger}
\end{array}\right)
$$

where $U \in \mathbb{R}^{n \times(n-p)}$ is any matrix whose columns form an orthonormal basis of $\operatorname{ker} A$.
Solution: Just use the two facts $\left(I-U U^{T}\right)=A^{\dagger} A$ and $A A^{\dagger}=I$ when multiplying the matrix given above by $\left[\begin{array}{cc}H & A^{T} \\ A & 0\end{array}\right]$ to show that you get the identity matrix.

