
Math 408 Homework Set 4 Solutions

(1) Let H, A, and b be as above and define ` : Rk → R by

`(x) :=
1

2
(Ax− b)TQ(Ax− b) ,

and consider the optimization problem

Q−LLS min
x∈Rn

1

2
(Ax− b)TQ(Ax− b).

(a) Give necessary and sufficient conditions under which the optimization problemQ−LLS
has a global optimal solution.

(b) If Q is positive definite, show that Q−LLS is equivalent to a linear least squares
problem.

(c) Give a necessary and sufficient condition under which Q−LLS has a unique global
optimal solution.

Solution Use the expansion

1

2
(Ax− b)TQ(Ax− b) =

1

2
xTATQAx− (ATQb)Tx+

1

2
bTQb

and apply known results.

(2) Determine whether the following matrices are positive definite, positive semi-definite, or
neither by attempting to compute their Choleski factorizations.

(a) H =

2 1 0
1 2 1
0 1 2

 (b) H =

2 1 0
1 2 1
0 1 −2


(c) H =

 5 2 −1
2 1 −1
−1 −1 2

 (d) H =

1 4 1
4 20 2
1 2 2

 .

Solution
(a) Positive definite by the determinant test. Gaussian elimination gives1 0 0

0 1 0
0 −2/3 1

 1 0 0
−1/2 1 0

0 0 1

2 1 0
1 2 1
0 1 2

 =

2 1 0
0 3/2 1
0 0 1/3

 =

2 0 0
0 3/2 0
0 0 1/3

1 1/2 0
0 1 2/3
0 0 1


and so

L =

 1 0 0
1/2 1 0
0 2/3 1


√

2 0 0

0
√

3/2 0

0 0
√

1/3

 .
(b) Obviously not positive definite since it has a −2 on the diagonal. Nonetheless, Gaussian
elimination gives1 0 0

0 1 0
0 −2/3 1

 1 0 0
−1/2 1 0

0 0 1

2 1 0
1 2 1
0 1 −2

 =

2 1 0
0 3/2 1
0 0 −8/3


and so the last pivot being negative implies that H is not positive semi-definite.

1



(c) H is positive semi-definite. Gaussian elimination gives1 0 0
0 1 0
0 3 1

 1 0 0
−2/5 1 0
1/5 0 1

 5 2 −1
2 1 −1
−1 −1 2

 =

5 2 −1
0 1/5 −3/5
0 0 0

 =

5 0 0
0 1/5 0
0 0 0

1 2/5 −1/5
0 1 −3
0 0 0


and so

L =

 1 0 0
2/5 1 0
−1/5 −3 0

√5 0 0

0
√

1/5 0
0 0 0

 .
(d) H is positive semi-definite. Gaussian elimination gives1 0 0

0 1 0
0 1/2 1

 1 0 0
−4 1 0
−1 0 1

1 4 1
4 20 2
1 2 2

 =

1 4 1
0 4 −2
0 0 0

 =

1 0 0
0 4 0
0 0 0

1 4 1
0 1 −1/2
0 0 0


and so

L =

1 0 0
4 1 0
1 −1/2 0

1 0 0
0 2 0
0 0 0

 .
(3) Consider the linearly constrained quadratic optimization problem

Q(H, g,A, b) minimize
1

2
xTHx+ gTx

subject to Ax = b ,

where H ∈ Rn×n is symmetric an positive definite and A ∈ Rm×n has rank (A) = m.
(a) Write necessary and sufficient optimality conditions for this problem at a pair (x̄, ȳ) ∈

Rn × Rm where ȳ is an Lagrange multiplier vector.

Solution:

[
H AT

A 0

](
x
y

)
=

(
−g
b

)
(b) Solve the problem Q(H, g,A, b) with

H =

1 1 0
1 2 1
0 1 3

 , g = (1, 1, 1)T , b = (4, 2)T , and A =

[
1 2 1
1 0 1

]
.

Solution: Apply Gaussian elimination to the augmented matrix for the system given
in (a), 

1 1 0 1 1 −1
1 2 1 2 0 −1
0 1 3 1 1 −1
1 2 2 0 0 4
1 0 1 0 0 2

 ,
to obtain the solution x̄ = 1

2
(3, 2, 1)T and y = −1

2
(5, 2)T .

(c) Solve the problem Q(H, g,A, b) with g = 0, m = 1, b = µ ∈ R, and A = 1Tn , where
1n ∈ Rn is the vector of all ones.

Solution: Again solve the system in part (a) to find that x = µ
1T
nH1n

H−11n and

y = − µ
1T
nH1n

.



(d) Show that the matrix AH−1AT is invertible.

Solution: Since H is positive definite, it has a Cholesky factorization H = LLT , where
L ∈ Rn×n is nonsingular. hence, H−1 = L−TL−1. Consequently, if 0 = AH−1ATx =
AL−TL−1ATx, then 0 = xTAL−TL−1ATx = ‖L−1ATx‖2, so L−1ATx = 0, or, equiva-
lently, ATx = 0 (just multipl through by L). But Nul

(
AT
)

= 0 since rank (A) = m, so

x = 0. Hence AH−1AT is invertible.

(e) Show that ȳ = −(AH−1AT )−1(AH−1g + b).

Solution: The system in part (a) tells us that Hx+ATy = −g and Ax = b. Multiplying
the first expression through byH−1 gives x = −H−1(ATy+g). Plugging this into Ax = b
gives AH−1ATy = −(AH−1g+b), or equivalently (by (d)) y = −(AH−1AT )−1(AH−1g+
b).

(f) Show that x̄ = −[H−1 −H−1AT (AH−1AT )−1AH−1]g +H−1AT (AH−1AT )−1b.

Solution: In the proof of (e) we saw that x = −H−1(ATy+g). Plugging the expression
for y into this equation for x gives the result.

(g) Show that[
H AT

A 0

]−1
=

[
[H−1 −H−1AT (AH−1AT )−1AH−1] H−1AT (AH−1AT )−1

(AH−1AT )−1AH−1 −(AH−1AT )−1

]
.

Solution: Just do the matrix multiply.

(4) Prove Proposition 2.1 in Chapter 3.

Solution: Proposition 2.1 in Chapter 3 reads as follows:
Proposition 2.1 Consider the two problems Q(H, g,A, b) and

Q̂(H, g,A, b) minimize z ∈ Rk 1

2
zT Ĥz + ĝT z ,

where Ĥ := V THV and ĝ := V T (Hx̂ + g) with x̂ any solution to Ax = b and V
being any matrix whose columns form a basis for the subspace Nul (A). Then the
sets of optimal solutions to these problems are related as follows:

{x̄ |x̄ solves Q(H, g,A, b)} =
{
x̂+ V z̄

∣∣∣z̄ solves Q̂(H, g,A, b)
}
.

Proof. Set f(x) := 1
2
xTHx+ gTx. Let x̄ solve Q(H, g,A, b). Since Ax̄ = b, there is a z̄ ∈ Rk

such that x̄ = x̂+ V z̄. In addition, since A(x̂+ V z) = b for any x ∈ Rk, we have

f(x̂+ V z̄) = f(x̄) ≤ f(x̂+ V z).

Hence z̄ solves Q̂(H, g,A, b).

Conversely, suppose z̄ solves Q̂(H, g,A, b) and set x̄ := x̂+V z̄. For every x ∈ Rn satisfying
Ax = b, there is a unique z(x) ∈ Rk such that x = x̂ + V z(x) since the columns of V form
a basis for Nul (A). Hence, for every x ∈ Rn,

f(x̄) = f(x̂+ V z̄) ≤ f(x̂+ V z(x)) = f(x),

and consequently x̄ solves Q(H, g,A, b). �

(5) Prove Part (5) of Theorem 2.1 in Chapter 3 on the course notes.

Solution: Part (5) of Theorem 2.1 in Chapter 3 reads as follows:



Theorem 2.1 Part (5):If either there exists ū ∈ S such that ūTHū < 0 or there
does not exist x̄ ∈ x̂+ S such that Hx̄+ g ∈ S⊥ (or both), then

−∞ = inf
x∈x̂+S

1

2
xTHx+ gTx .

Proof. Set f(x) = 1
2
xTHx+ gTx. If there is a ū ∈ S for which ūTHū < 0, then

f(x̂+ tū) =
1

2
(x̂+ tū)TH(x̂+ tū) + gT (x̂+ tū) =

t2

2
ūTHū+ t(Hx̂+ g)T ū+

1

2
x̂THx̂,

where (x̂+ tū) ∈ x̂+ S for all t ∈ R. Hence f(x̂+ tū)TH(x̂+ tū) ↓ −∞ as t ↑ +∞.
Next assume that H is positive semidefinite on S, but there is no x ∈ x̂ + S such that

Hx + g ∈ S⊥. If V ∈ Rn×k have columns that form a basis for S, where k = dimS. Then

our assumptions are equivalent to saying that Ĥ := V THV is positive semidefinite and there

is no solution to the equation V T (H(x̂ + V z) + g) = 0, i.e., ĝ := V T (Hx̂ + g) /∈ Ran
(
Ĥ
)

.

Let P ∈ Rk×k be the orthogonal projection onto Ran
(
Ĥ
)

so that (I −P ) is the orthogonal

projection onto Ran
(
Ĥ
)⊥

= Nul
(
Ĥ
)

. Set ĝ1 := P ĝ and ĝ2 := (I−P )ĝ so that ĝ = ĝ1 + ĝ2.

Since ĝ /∈ Ran
(
Ĥ
)
, ĝ2 6= 0. Then, for all t ∈ R, we have x(t) := x̂−tV (I−P )V T (Hx̂+g) ∈

x̂+ S and

f(x(t)) = f(x̂) +
t2

2
ĝT2 Ĥĝ2 − tĝT ĝ2 = −t‖ĝ2‖2.

Hence, f(x(t)) ↓ −∞ as t ↑ +∞, thereby proving the result. �

(6) Use Lemma 3.1 Part (1) to inductively show that the only matrix in Sn+ having zero diagonal
is the zero matrix.

Solution: The proof follows by induction on the dimension n. The result is trivially true
for n = 1, so suppose it is true for dimension k = 1, . . . , n − 1. We need to show it is true
for dimension n. Let H ∈ Sn+ have zero diagonal and suppose

H =

[
Ĥ v
vT 0

]
.

Clearly, Ĥ is positive semidefinite with zero diagonal, and so, by the induction hypothesis,

Ĥ = 0. Since H ∈ Sn+, Lemma 3.1 tells us that there is a vector z ∈ Rn−1 such that

v = Ĥz = 0z = 0, which proves the result.

(7) Let A ∈ Rm×n have rank m < n and let H ∈ Sn be positive definite on Nul (A), i.e., uTHu >
0, ∀u ∈ Nul (A). These hypotheses imply that AAT is invertible. Define A† := AT (AAT )−1.
In this context the matrix A† is called the Moore-Penrose pseudo inverse of A.
(a) Show that the dimension of the Nul (A) is n−m.

Solution: This is just the rank plus nullity theorem.

(b) Let U ∈ Rn×(n−m) be any matrix whose columns form an orthonormal basis for Nul (A)
and show that I − UUT = A†A.

Solution: It was shown in clkass and the course notes that UUT is the orthogo-
nal projector onto Nul (A) and consequently I − UUT is the orthogonal projector

onto Nul (A)⊥ = Ran
(
AT
)
. Therefore, this question asks us to show that A†A is



the orthogonal projector onto Ran
(
AT
)
. To this end, set Q := A†A and note that

Q2 = A†AA†A = AT (AAT )−1AAT (AAT )−1A = AT (AAT )−1A = A†A = Q and QT =
(A†A)T = AT (AAT )−1A = Q. Hence Q is the orthogonal projection onto its range.
Thus, it remains only to show that Ran

(
A†A

)
= Ran

(
AT
)
. Since A†A = AT (AAT )−1A,

it is clear that Ran
(
A†A

)
⊂ Ran

(
AT
)
. On the other hand, if x ∈ Ran

(
AT
)
, then there

is a u such that x = ATu. Hence, A†Ax = A†AATu = AT (AAT )−1AATu = ATu = x.
Consequently, we have the reverse inclusion Ran

(
AT
)
⊂ Ran

(
A†A

)
which establishes

the result.

(c) Show that[
H AT

A 0

]−1
=

(
U(UTHU)−1UT

(
I − U(UTHU)−1UTH

)
A†

(A†)T
(
I −HU(UTHU)−1UT

)
(A†)T

(
HU(UTHU)−1UTH −H

)
A†

)
,

where U ∈ Rn×(n−p) is any matrix whose columns form an orthonormal basis of kerA.

Solution: Just use the two facts (I−UUT ) = A†A and AA† = I when multiplying the

matrix given above by

[
H AT

A 0

]
to show that you get the identity matrix.


