Math 408

Homework Set 4 Solutions

(1) Let H, A, and b be as above and define $\ell : \mathbb{R}^k \to \mathbb{R}$ by

$$\ell(x) := \frac{1}{2} (Ax - b)^T Q (Ax - b) ,$$

and consider the optimization problem

$$Q - \mathcal{LLS} \qquad \min_{x \in \mathbb{R}^n} \frac{1}{2} (Ax - b)^T Q(Ax - b).$$

- (a) Give necessary and sufficient conditions under which the optimization problem $Q \mathcal{LLS}$ has a global optimal solution.
- (b) If Q is positive definite, show that $Q \mathcal{LLS}$ is equivalent to a linear least squares problem.
- (c) Give a necessary and sufficient condition under which $Q \mathcal{LLS}$ has a unique global optimal solution.

Solution Use the expansion

$$\frac{1}{2}(Ax - b)^{T}Q(Ax - b) = \frac{1}{2}x^{T}A^{T}QAx - (A^{T}Qb)^{T}x + \frac{1}{2}b^{T}Qb$$

and apply known results.

(2) Determine whether the following matrices are positive definite, positive semi-definite, or neither by attempting to compute their Choleski factorizations.

$$(a) H = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$
$$(b) H = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & -2 \end{bmatrix}$$
$$(c) H = \begin{bmatrix} 5 & 2 & -1 \\ 2 & 1 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$
$$(d) H = \begin{bmatrix} 1 & 4 & 1 \\ 4 & 20 & 2 \\ 1 & 2 & 2 \end{bmatrix} .$$

Solution

(a) Positive definite by the determinant test. Gaussian elimination gives

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2/3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -1/2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3/2 & 1 \\ 0 & 0 & 1/3 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3/2 & 0 \\ 0 & 0 & 1/3 \end{bmatrix} \begin{bmatrix} 1 & 1/2 & 0 \\ 0 & 1 & 2/3 \\ 0 & 0 & 1 \end{bmatrix}$$

and so

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 0 & 2/3 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 & 0 \\ 0 & \sqrt{3/2} & 0 \\ 0 & 0 & \sqrt{1/3} \end{bmatrix}.$$

(b) Obviously not positive definite since it has a -2 on the diagonal. Nonetheless, Gaussian elimination gives

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2/3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -1/2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & -2 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3/2 & 1 \\ 0 & 0 & -8/3 \end{bmatrix}$$

and so the last pivot being negative implies that H is not positive semi-definite.

(c) H is positive semi-definite. Gaussian elimination gives

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -2/5 & 1 & 0 \\ 1/5 & 0 & 1 \end{bmatrix} \begin{bmatrix} 5 & 2 & -1 \\ 2 & 1 & -1 \\ -1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 2 & -1 \\ 0 & 1/5 & -3/5 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 1/5 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2/5 & -1/5 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \end{bmatrix}$$

and so
$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2/5 & 1 & 0 \end{bmatrix} \begin{bmatrix} \sqrt{5} & 0 & 0 \\ 0 & \sqrt{1/5} & 0 \end{bmatrix}.$$

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2/5 & 1 & 0 \\ -1/5 & -3 & 0 \end{bmatrix} \begin{bmatrix} \sqrt{5} & 0 & 0 \\ 0 & \sqrt{1/5} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

(d) H is positive semi-definite. Gaussian elimination gives

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1/2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 & 1 \\ 4 & 20 & 2 \\ 1 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 1 \\ 0 & 4 & -2 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 4 & 1 \\ 0 & 1 & -1/2 \\ 0 & 0 & 0 \end{bmatrix}$$
and so
$$\begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 1 & -1/2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

(3) Consider the linearly constrained quadratic optimization problem

$$\mathcal{Q}(H, g, A, b)$$
 minimize $\frac{1}{2}x^T H x + g^T x$
subject to $Ax = b$,

where $H \in \mathbb{R}^{n \times n}$ is symmetric and positive definite and $A \in \mathbb{R}^{m \times n}$ has rank (A) = m.

(a) Write necessary and sufficient optimality conditions for this problem at a pair $(\bar{x}, \bar{y}) \in$ $\mathbb{R}^n \times \mathbb{R}^m$ where \bar{y} is an Lagrange multiplier vector.

Solution:
$$\begin{bmatrix} H & A^T \\ A & 0 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -g \\ b \end{pmatrix}$$

(b) Solve the problem $\mathcal{Q}(H, q, A, b)$ with

$$H = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 3 \end{bmatrix}, \ g = (1, 1, 1)^T, \ b = (4, 2)^T, \text{ and } A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix}.$$

Solution: Apply Gaussian elimination to the augmented matrix for the system given in (a),

$$\left[\begin{array}{cccccccccc} 1 & 1 & 0 & 1 & 1 & -1 \\ 1 & 2 & 1 & 2 & 0 & -1 \\ 0 & 1 & 3 & 1 & 1 & -1 \\ 1 & 2 & 2 & 0 & 0 & 4 \\ 1 & 0 & 1 & 0 & 0 & 2 \end{array}\right],$$

to obtain the solution $\bar{x} = \frac{1}{2}(3, 2, 1)^T$ and $y = -\frac{1}{2}(5, 2)^T$.

(c) Solve the problem $\mathcal{Q}(H, g, A, b)$ with $g = 0, m = 1, b = \mu \in \mathbb{R}$, and $A = \mathbf{1}_n^T$, where $\mathbf{1}_n \in \mathbb{R}^n$ is the vector of all ones.

Solution: Again solve the system in part (a) to find that $x = \frac{\mu}{\mathbf{1}_n^T H \mathbf{1}_n} H^{-1} \mathbf{1}_n$ and $y = -\frac{\mu}{\mathbf{1}_n^T H \mathbf{1}_n}.$

- (d) Show that the matrix $AH^{-1}A^{T}$ is invertible.
 - **Solution:** Since *H* is positive definite, it has a Cholesky factorization $H = LL^T$, where $L \in \mathbb{R}^{n \times n}$ is nonsingular. hence, $H^{-1} = L^{-T}L^{-1}$. Consequently, if $0 = AH^{-1}A^Tx = AL^{-T}L^{-1}A^Tx$, then $0 = x^TAL^{-T}L^{-1}A^Tx = ||L^{-1}A^Tx||^2$, so $L^{-1}A^Tx = 0$, or, equivalently, $A^Tx = 0$ (just multipl through by *L*). But Nul $(A^T) = 0$ since rank (A) = m, so x = 0. Hence $AH^{-1}A^T$ is invertible.
- (e) Show that $\bar{y} = -(AH^{-1}A^T)^{-1}(AH^{-1}g + b)$. **Solution:** The system in part (a) tells us that $Hx + A^Ty = -g$ and Ax = b. Multiplying the first expression through by H^{-1} gives $x = -H^{-1}(A^Ty+g)$. Plugging this into Ax = b gives $AH^{-1}A^Ty = -(AH^{-1}g+b)$, or equivalently (by (d)) $y = -(AH^{-1}A^T)^{-1}(AH^{-1}g+b)$.
- (f) Show that $\bar{x} = -[H^{-1} H^{-1}A^T(AH^{-1}A^T)^{-1}AH^{-1}]g + H^{-1}A^T(AH^{-1}A^T)^{-1}b$. Solution: In the proof of (e) we saw that $x = -H^{-1}(A^Ty+g)$. Plugging the expression for y into this equation for x gives the result.
- (g) Show that

$$\begin{bmatrix} H & A^T \\ A & 0 \end{bmatrix}^{-1} = \begin{bmatrix} [H^{-1} - H^{-1}A^T(AH^{-1}A^T)^{-1}AH^{-1}] & H^{-1}A^T(AH^{-1}A^T)^{-1} \\ (AH^{-1}A^T)^{-1}AH^{-1} & -(AH^{-1}A^T)^{-1} \end{bmatrix}.$$

Solution: Just do the matrix multiply.

(4) Prove Proposition 2.1 in Chapter 3.

Solution: Proposition 2.1 in Chapter 3 reads as follows:

Proposition 2.1 Consider the two problems $\mathcal{Q}(H, g, A, b)$ and

$$\widehat{\mathcal{Q}}(H, g, A, b)$$
 minimize $z \in \mathbb{R}^k \frac{1}{2} z^T \widehat{H} z + \widehat{g}^T z$

where $\hat{H} := V^T H V$ and $\hat{g} := V^T (H \hat{x} + g)$ with \hat{x} any solution to Ax = b and V being any matrix whose columns form a basis for the subspace Nul(A). Then the sets of optimal solutions to these problems are related as follows:

$$\{\bar{x} \mid \bar{x} \text{ solves } \mathcal{Q}(H, g, A, b)\} = \left\{\hat{x} + V\bar{z} \mid \bar{z} \text{ solves } \widehat{\mathcal{Q}}(H, g, A, b)\right\}.$$

Proof. Set $f(x) := \frac{1}{2}x^T H x + g^T x$. Let \bar{x} solve $\mathcal{Q}(H, g, A, b)$. Since $A\bar{x} = b$, there is a $\bar{z} \in \mathbb{R}^k$ such that $\bar{x} = \hat{x} + V\bar{z}$. In addition, since $A(\hat{x} + Vz) = b$ for any $x \in \mathbb{R}^k$, we have

$$f(\hat{x} + V\bar{z}) = f(\bar{x}) \le f(\hat{x} + Vz).$$

Hence \overline{z} solves $\widehat{\mathcal{Q}}(H, g, A, b)$.

Conversely, suppose \bar{z} solves $\widehat{\mathcal{Q}}(H, g, A, b)$ and set $\bar{x} := \hat{x} + V\bar{z}$. For every $x \in \mathbb{R}^n$ satisfying Ax = b, there is a unique $z(x) \in \mathbb{R}^k$ such that $x = \hat{x} + Vz(x)$ since the columns of V form a basis for Nul(A). Hence, for every $x \in \mathbb{R}^n$,

$$f(\bar{x}) = f(\hat{x} + V\bar{z}) \le f(\hat{x} + Vz(x)) = f(x),$$

and consequently \bar{x} solves $\mathcal{Q}(H, g, A, b)$.

(5) Prove Part (5) of Theorem 2.1 in Chapter 3 on the course notes.

Solution: Part (5) of Theorem 2.1 in Chapter 3 reads as follows:

Theorem 2.1 Part (5): If either there exists $\bar{u} \in S$ such that $\bar{u}^T H \bar{u} < 0$ or there does not exist $\bar{x} \in \hat{x} + S$ such that $H\bar{x} + g \in S^{\perp}$ (or both), then

$$-\infty = \inf_{x \in \hat{x} + S} \frac{1}{2} x^T H x + g^T x \; .$$

Proof. Set $f(x) = \frac{1}{2}x^T H x + g^T x$. If there is a $\bar{u} \in S$ for which $\bar{u}^T H \bar{u} < 0$, then

$$f(\hat{x} + t\bar{u}) = \frac{1}{2}(\hat{x} + t\bar{u})^T H(\hat{x} + t\bar{u}) + g^T(\hat{x} + t\bar{u}) = \frac{t^2}{2}\bar{u}^T H\bar{u} + t(H\hat{x} + g)^T\bar{u} + \frac{1}{2}\hat{x}^T H\hat{x},$$

where $(\hat{x} + t\bar{u}) \in \hat{x} + S$ for all $t \in \mathbb{R}$. Hence $f(\hat{x} + t\bar{u})^T H(\hat{x} + t\bar{u}) \downarrow -\infty$ as $t \uparrow +\infty$.

Next assume that H is positive semidefinite on S, but there is no $x \in \hat{x} + S$ such that $Hx + g \in S^{\perp}$. If $V \in \mathbb{R}^{n \times k}$ have columns that form a basis for S, where $k = \dim S$. Then our assumptions are equivalent to saying that $\hat{H} := V^T H V$ is positive semidefinite and there is no solution to the equation $V^T(H(\hat{x} + Vz) + g) = 0$, i.e., $\hat{g} := V^T(H\hat{x} + g) \notin \operatorname{Ran}\left(\hat{H}\right)$. Let $P \in \mathbb{R}^{k \times k}$ be the orthogonal projection onto $\operatorname{Ran}\left(\hat{H}\right)$ so that (I - P) is the orthogonal projection onto $\operatorname{Ran}\left(\hat{H}\right)$. Set $\hat{g}_1 := P\hat{g}$ and $\hat{g}_2 := (I - P)\hat{g}$ so that $\hat{g} = \hat{g}_1 + \hat{g}_2$. Since $\hat{g} \notin \operatorname{Ran}\left(\hat{H}\right)$, $\hat{g}_2 \neq 0$. Then, for all $t \in \mathbb{R}$, we have $x(t) := \hat{x} - tV(I - P)V^T(H\hat{x} + g) \in \hat{x} + S$ and

$$f(x(t)) = f(\hat{x}) + \frac{t^2}{2}\hat{g}_2^T\hat{H}\hat{g}_2 - t\hat{g}^T\hat{g}_2 = -t\|\hat{g}_2\|^2.$$

Hence, $f(x(t)) \downarrow -\infty$ as $t \uparrow +\infty$, thereby proving the result.

(6) Use Lemma 3.1 Part (1) to inductively show that the only matrix in \mathcal{S}^n_+ having zero diagonal is the zero matrix.

Solution: The proof follows by induction on the dimension n. The result is trivially true for n = 1, so suppose it is true for dimension k = 1, ..., n - 1. We need to show it is true for dimension n. Let $H \in S^n_+$ have zero diagonal and suppose

$$H = \begin{bmatrix} \hat{H} & v \\ v^T & 0 \end{bmatrix}.$$

Clearly, \hat{H} is positive semidefinite with zero diagonal, and so, by the induction hypothesis, $\hat{H} = 0$. Since $H \in S^n_+$, Lemma 3.1 tells us that there is a vector $z \in \mathbb{R}^{n-1}$ such that $v = \hat{H}z = 0z = 0$, which proves the result.

(7) Let A ∈ ℝ^{m×n} have rank m < n and let H ∈ Sⁿ be positive definite on Nul (A), i.e., u^THu > 0, ∀u ∈ Nul (A). These hypotheses imply that AA^T is invertible. Define A[†] := A^T(AA^T)⁻¹. In this context the matrix A[†] is called the Moore-Penrose pseudo inverse of A.
(a) Show that the dimension of the Nul (A) is n - m.

Solution: This is just the rank plus nullity theorem.

(b) Let $U \in \mathbb{R}^{n \times (n-m)}$ be any matrix whose columns form an orthonormal basis for Nul (A) and show that $I - UU^T = A^{\dagger}A$.

Solution: It was shown in clkass and the course notes that UU^T is the orthogonal projector onto Nul(A) and consequently $I - UU^T$ is the orthogonal projector onto Nul(A)^{\perp} = Ran(A^T). Therefore, this question asks us to show that A[†]A is

the orthogonal projector onto Ran (A^T) . To this end, set $Q := A^{\dagger}A$ and note that $Q^2 = A^{\dagger}AA^{\dagger}A = A^T(AA^T)^{-1}AA^T(AA^T)^{-1}A = A^T(AA^T)^{-1}A = A^{\dagger}A = Q$ and $Q^T = (A^{\dagger}A)^T = A^T(AA^T)^{-1}A = Q$. Hence Q is the orthogonal projection onto its range. Thus, it remains only to show that Ran $(A^{\dagger}A) = \text{Ran}(A^T)$. Since $A^{\dagger}A = A^T(AA^T)^{-1}A$, it is clear that Ran $(A^{\dagger}A) \subset \text{Ran}(A^T)$. On the other hand, if $x \in \text{Ran}(A^T)$, then there is a u such that $x = A^T u$. Hence, $A^{\dagger}Ax = A^{\dagger}AA^T u = A^T(AA^T)^{-1}AA^T u = A^T u = x$. Consequently, we have the reverse inclusion Ran $(A^T) \subset \text{Ran}(A^{\dagger}A)$ which establishes the result.

(c) Show that

$$\begin{bmatrix} H & A^T \\ A & 0 \end{bmatrix}^{-1} = \begin{pmatrix} U(U^T H U)^{-1} U^T & (I - U(U^T H U)^{-1} U^T H) A^{\dagger} \\ (A^{\dagger})^T (I - H U(U^T H U)^{-1} U^T) & (A^{\dagger})^T (H U(U^T H U)^{-1} U^T H - H) A^{\dagger} \end{pmatrix},$$
where $U \in \mathbb{R}^{n \times (n-p)}$ is any matrix whose columns form an orthonormal basis of ker d

where $U \in \mathbb{R}^{n \times (n-p)}$ is any matrix whose columns form an orthonormal basis of ker A. **Solution:** Just use the two facts $(I - UU^T) = A^{\dagger}A$ and $AA^{\dagger} = I$ when multiplying the matrix given above by $\begin{bmatrix} H & A^T \\ A & 0 \end{bmatrix}$ to show that you get the identity matrix.