Math 408

Homework Set 3

This homework set will focus on the optimization problem

$$\mathcal{Q} \qquad \min_{x \in \mathbb{R}^n} \frac{1}{2} x^T H x + g^T x \; ,$$

where $H \in \mathbb{R}^{n \times n}$ is symmetric and $g \in \mathbb{R}^n$.

- (1) Each of the following functions can be written in the form $f(x) = \frac{1}{2}x^T H x + g^T x$ with H symmetric. For each of these functions what are H and g
- (a) $f(x) = x_1^2 4x_1 + 2x_2^2 + 7$ (c) $f(x) = x_1^2 2x_1x_2 + \frac{1}{2}x_2^2 8x_2$ (d) $f(x) = (2x_1 x_2)^2 + (x_2 x_3)^2 + (x_3 1)^2$ (e) $f(x) = x_1^2 + 16x_1x_2 + 4x_2x_3 + x_2^2$ (2) Let $H \in S_{++}^n$ and $g, \bar{x}, d \in \mathbb{R}^n$ with $d \neq 0$, and consider the functions $f : \mathbb{R}^n \to \mathbb{R}$ and $\phi : \mathbb{R} \to \mathbb{R}$
- given by

$$f(x) := \frac{1}{2}x^T H x + g^T x$$
 and $\phi(t) := f(\bar{x} + td).$

What is the solution to the problem $\min_{t \in \mathbb{R}} \phi(t)$?

- (3) Let $\alpha, \beta \in \mathbb{R}$ and define $\phi : \mathbb{R} \to \mathbb{R}$ by $\phi(t : \alpha, \beta) := \frac{\alpha}{2}t^2 + \beta t$. Compute the values $\bar{\phi}(\alpha, \beta) := \min \{\phi(t : \alpha, \beta) \mid 0 \le t \le 1\}$ and the set $\Gamma(\alpha, \beta) := \operatorname{argmin} \{\phi(t; \alpha, \beta) \mid 0 \le t \le 1\}$ for all possible values of $(\alpha, \beta) \in \mathbb{R}^2$.
- (4) For each of the matrices H and vectors q below determine the optimal value in \mathcal{Q} . If an optimal solution exists, compute the complete set of optimal solutions. (a)

$$H = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} \quad \text{and} \quad g = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}.$$

(b)

$$H = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & -2 \end{bmatrix} \quad \text{and} \quad g = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}.$$

(c)

$$H = \begin{bmatrix} 5 & 2 & -1 \\ 2 & 1 & -1 \\ -1 & -1 & 2 \end{bmatrix} \quad \text{and} \quad g = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}.$$

(5) Consider the matrix $H \in \mathbb{R}^{3 \times 3}$ and vector $g \in \mathbb{R}^3$ given by

$$H = \begin{bmatrix} 1 & 4 & 1 \\ 4 & 20 & 2 \\ 1 & 2 & 2 \end{bmatrix} \quad \text{and} \quad g = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$$

Does there exists a vector $u \in \mathbb{R}^3$ such that $f(tu) \xrightarrow{t\uparrow\infty} -\infty$? If yes, construct u.

(6) A mapping $\langle \cdot, \cdot \rangle : \mathbb{R}^n \to \mathbb{R}^n$ is said to be an inner product on \mathbb{R}^n is for all $x, y, z \in \mathbb{R}^n$

(i)	$\langle x , x \rangle \ge 0$	Non-Negative
(ii)	$\langle x , x \rangle = 0 \Leftrightarrow x = 0$	Positive
(iii)	$\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$	Additive
(iv)	$\langle \alpha x , y \rangle = \alpha \langle x , y \rangle \; \forall \alpha \in \mathbb{R}$	Homogeneous
(v)	$\langle x,y angle = \langle y,x angle$	Symmetric

Two vectors $x, y \in \mathbb{R}^n$ are said to be orthogonal in the inner product $\langle \cdot, \cdot \rangle$ if $\langle x, y \rangle = 0$. Unless otherwise specified, let $\langle x, y \rangle$ denote the usual Euclidean inner product:

$$\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i \; .$$

(a) Let $\langle x, y \rangle$ be the standard Euclidean inner product on \mathbb{R}^n . Given $A \in \mathbb{R}^{n \times n}$, show that A = 0 if and only if

$$\langle x, Ay \rangle = 0 \quad \forall x, y \in \mathbb{R}^n$$
.

(b) Let $H \in \mathbb{R}^{n \times n}$ be symmetric and positive definite (i.e. $H = H^T$ and $x^T H x > 0 \forall x \in \mathbb{R}^n \setminus \{0\}$). Show that the relation

$$\langle x, y \rangle_H := x^T H y \quad \forall \ x, y \in \mathbb{R}^n$$

defines an inner product on \mathbb{R}^n .

(c) Every inner product defines a transformation on the space of linear operators called the *adjoint*. For the Euclidean inner product on \mathbb{R}^n , this is just the usual transpose. Given a linear transformation $M : \mathbb{R}^n \to \mathbb{R}^n$, the adjoint is defined by the relation

 $\langle y, Mx \rangle = \langle M^*y, x \rangle$, for all $x, y \in \mathbb{R}^n$.

The inner product $\langle \cdot, \cdot \rangle_H$ defined above, also defines an adjoint mapping which we can denote by M^{T_H} . Show that

$$M^{T_H} = H^{-1} M^T H \; .$$

(d) The matrix $P \in \mathbb{R}^{n \times n}$ is said to a projection if $P^2 = P$. Clearly, if P is a projection, then so is I - P. The subspace $P\mathbb{R}^n = \text{Ran}(P)$ is called the subspace that P projects onto. A projection is said to be orthogonal with respect to a given inner product $\langle \cdot, \cdot \rangle$ on \mathbb{R}^n if and only if

$$\langle (I-P)x, Py \rangle = 0 \quad \forall x, y \in \mathbb{R}^n$$

that is, the subspaces $\operatorname{Ran}(P)$ and $\operatorname{Ran}(I-P)$ are orthogonal in the inner product $\langle \cdot, \cdot \rangle$. Show that the projection P is orthogonal with respect to the inner product $\langle \cdot, \cdot \rangle_H$ (defined above), where $H \in \mathbb{R}^{n \times n}$ is symmetric and positive definite, if and only if

$$P = H^{-1}P^T H \; .$$