Math 408

Homework Set 3

This homework set will focus on the optimization problem

$$
\mathcal{Q} \quad \min _{x \in \mathbb{R}^{n}} \frac{1}{2} x^{T} H x+g^{T} x
$$

where $H \in \mathbb{R}^{n \times n}$ is symmetric and $g \in \mathbb{R}^{n}$.
(1) Each of the following functions can be written in the form $f(x)=\frac{1}{2} x^{T} H x+g^{T} x$ with H symmetric.

For each of these functions what are H and g
(a) $f(x)=x_{1}^{2}-4 x_{1}+2 x_{2}^{2}+7$
(c) $f(x)=x_{1}^{2}-2 x_{1} x_{2}+\frac{1}{2} x_{2}^{2}-8 x_{2}$
(d) $f(x)=\left(2 x_{1}-x_{2}\right)^{2}+\left(x_{2}-x_{3}\right)^{2}+\left(x_{3}-1\right)^{2}$
(e) $f(x)=x_{1}^{2}+16 x_{1} x_{2}+4 x_{2} x_{3}+x_{2}^{2}$
(2) Let $H \in \mathcal{S}_{++}^{n}$ and $g, \bar{x}, d \in \mathbb{R}^{n}$ with $d \neq 0$, and consider the functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $\phi: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x):=\frac{1}{2} x^{T} H x+g^{T} x \text { and } \phi(t):=f(\bar{x}+t d)
$$

What is the solution to the problem $\min _{t \in \mathbb{R}} \phi(t)$?
(3) Let $\alpha, \beta \in \mathbb{R}$ and define $\phi: \mathbb{R} \rightarrow \mathbb{R}$ by $\phi(t: \alpha, \beta):=\frac{\alpha}{2} t^{2}+\beta t$. Compute the values $\bar{\phi}(\alpha, \beta):=$ $\min \{\phi(t: \alpha, \beta) \mid 0 \leq t \leq 1\}$ and the set $\Gamma(\alpha, \beta):=\operatorname{argmin}\{\phi(t ; \alpha, \beta) \mid 0 \leq t \leq 1\}$ for all possible values of $(\alpha, \beta) \in \mathbb{R}^{2}$.
(4) For each of the matrices H and vectors g below determine the optimal value in \mathcal{Q}. If an optimal solution exists, compute the complete set of optimal solutions.
(a)

$$
H=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right] \quad \text { and } \quad g=\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right]
$$

(b)

$$
H=\left[\begin{array}{ccc}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & -2
\end{array}\right] \quad \text { and } \quad g=\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right]
$$

(c)

$$
H=\left[\begin{array}{ccc}
5 & 2 & -1 \\
2 & 1 & -1 \\
-1 & -1 & 2
\end{array}\right] \quad \text { and } \quad g=\left[\begin{array}{l}
3 \\
1 \\
0
\end{array}\right]
$$

(5) Consider the matrix $H \in \mathbb{R}^{3 \times 3}$ and vector $g \in \mathbb{R}^{3}$ given by

$$
H=\left[\begin{array}{ccc}
1 & 4 & 1 \\
4 & 20 & 2 \\
1 & 2 & 2
\end{array}\right] \quad \text { and } \quad g=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Does there exists a vector $u \in \mathbb{R}^{3}$ such that $f(t u) \xrightarrow{t \uparrow \infty}-\infty$? If yes, construct u.
(6) A mapping $\langle\cdot, \cdot\rangle: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is said to be an inner product on \mathbb{R}^{n} is for all $x, y, z \in \mathbb{R}^{n}$

| (i) $\langle x, x\rangle \geq 0$ | Non-Negative |
| :--- | :--- | :--- |
| (ii) $\langle x, x\rangle=0 \Leftrightarrow x=0$ | Positive |
| (iii) $\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$ | Additive |
| (iv) $\langle\alpha x, y\rangle=\alpha\langle x, y\rangle \forall \alpha \in \mathbb{R}$ | Homogeneous |
| (v) $\langle x, y\rangle=\langle y, x\rangle$ | Symmetric |

Two vectors $x, y \in \mathbb{R}^{n}$ are said to be orthogonal in the inner product $\langle\cdot, \cdot\rangle$ if $\langle x, y\rangle=0$. Unless otherwise specified, let $\langle x, y\rangle$ denote the usual Euclidean inner product:

$$
\langle x, y\rangle=x^{T} y=\sum_{i=1}^{n} x_{i} y_{i}
$$

(a) Let $\langle x, y\rangle$ be the standard Euclidean inner product on \mathbb{R}^{n}. Given $A \in \mathbb{R}^{n \times n}$, show that $A=0$ if and only if

$$
\langle x, A y\rangle=0 \quad \forall x, y \in \mathbb{R}^{n} .
$$

(b) Let $H \in \mathbb{R}^{n \times n}$ be symmetric and positive definite (i.e. $H=H^{T}$ and $x^{T} H x>0 \forall x \in \mathbb{R}^{n} \backslash\{0\}$). Show that the relation

$$
\langle x, y\rangle_{H}:=x^{T} H y \quad \forall x, y \in \mathbb{R}^{n}
$$

defines an inner product on \mathbb{R}^{n}.
(c) Every inner product defines a transformation on the space of linear operators called the adjoint. For the Euclidean inner product on \mathbb{R}^{n}, this is just the usual transpose. Given a linear transformation $M: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, the adjoint is defined by the relation

$$
\langle y, M x\rangle=\left\langle M^{*} y, x\right\rangle, \quad \text { for all } x, y, \in \mathbb{R}^{n}
$$

The inner product $\langle\cdot, \cdot\rangle_{H}$ defined above, also defines an adjoint mapping which we can denote by $M^{T_{H}}$. Show that

$$
M^{T_{H}}=H^{-1} M^{T} H
$$

(d) The matrix $P \in \mathbb{R}^{n \times n}$ is said to a projection if $P^{2}=P$. Clearly, if P is a projection, then so is $I-P$. The subspace $P \mathbb{R}^{n}=\operatorname{Ran}(P)$ is called the subspace that P projects onto. A projection is said to be orthogonal with respect to a given inner product $\langle\cdot, \cdot\rangle$ on \mathbb{R}^{n} if and only if

$$
\langle(I-P) x, P y\rangle=0 \quad \forall x, y \in \mathbb{R}^{n},
$$

that is, the subspaces $\operatorname{Ran}(P)$ and $\operatorname{Ran}(I-P)$ are orthogonal in the inner product $\langle\cdot, \cdot\rangle$. Show that the projection P is orthogonal with respect to the inner product $\langle\cdot, \cdot\rangle_{H}$ (defined above), where $H \in \mathbb{R}^{n \times n}$ is symmetric and positive definite, if and only if

$$
P=H^{-1} P^{T} H
$$

