
Math 408 Homework Set 3 Solutions

This homework set will focus on the optimization problem

Q min
x∈Rn

1

2
xTHx+ gTx ,

where H ∈ Rn×n is symmetric and g ∈ Rn.

(1) Each of the following functions can be written in the form f(x) = 1
2
xTHx+gTx with H symmetric.

For each of these functions what are H and g
(a) f(x) = x2

1 − 4x1 + 2x2
2 + 7

Solution

H = 2

[
1 0
0 2

]
and g = (−4, 0)T

(c) f(x) = x2
1 − 2x1x2 + 1

2
x2

2 − 8x2

Solution

H = 2

[
1 −1
−1 1/2

]
and g = (0, −8)T

(d) f(x) = (2x1 − x2)2 + (x2 − x3)2 + (x3 − 1)2

Solution:

A =

2 −1 0
0 1 −1
0 0 1

 b =

0
0
1

 H = 2ATA = 2

 4 −2 0
−2 2 −1
0 −1 2

 and g = −AT b =

 0
0
−1


(e) f(x) = x2

1 + 16x1x2 + 4x2x3 + x2
2

Solution:

H = 2

1 8 0
8 1 2
0 2 0

 and g = 0

(2) Let H ∈ Sn++ and g, x̄, d ∈ Rn with d 6= 0, and consider the functions f : Rn → R and φ : R→ R
given by

f(x) :=
1

2
xTHx+ gTx and φ(t) := f(x̄+ td).

What is the solution to the problem mint∈R φ(t)?

Solution:

φ(t) = f(x̄) + t(Hx̄+ g)Td+
t2

2
dTHd and φ′(t) = tdTHd+ (Hx̄+ g)Td.

Since φ is a quadratic function of t with φ′′(t) = dTHd > 0, the global minimizer of φ occurs when

φ′(t) = 0, that is, when t = − (Hx̄+g)T d
dTHd

.
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(3) Let α, β ∈ R and define φ : R → R by φ(t : α, β) := α
2
t2 + βt. Compute the values φ̄(α, β) :=

min {φ(t : α, β) |0 ≤ t ≤ 1} and the set Γ(α, β) := argmin {φ(t;α, β) |0 ≤ t ≤ 1} for all possible
values of (α, β) ∈ R2.

Solution:

Γ(α, β) :=



{0} , α = 0, β > 0,

[0, 1] , α = 0, β = 0,

{1} , α = 0, β < 0,

{0} , α < 0, −α
2
< β,

{0, 1} , α < 0, −α
2

= β,

{1} , α < 0, β < −α
2
,

{0} , α > 0, 0 ≤ β,

{−β
α
} , α > 0, 0 < −β < α,

{1} , α > 0, α ≤ −β.

φ̄(α, β) =



0 , α = 0, 0 ≤ β,

β , α = 0, β < 0,

0 , α < 0, −α
2
≤ β,

α
2

+ β , α < 0, β < −α
2
,

0 , α > 0, 0 ≤ β,

−β2

2α
, α > 0, 0 < −β < α,

α
2

+ β , α > 0, α,−β.

(4) For each of the matrices H and vectors g below determine the optimal value in Q. If an optimal
solution exists, compute the complete set of optimal solutions.

Solution: For this analysis our primary tool is Theorem 1.1 on page 26 of the course text.

(a)

H =

2 1 0
1 2 1
0 1 2

 and g =

3
1
1

 .
Solution: The principal minors of H are 2, 5, and 8 which are all positive. Hence, by
Proposition 3.1 on page 30 of the course notes, H is positive definite. Therefore the unique
optimal solution is given by −H−1g = (−2, 1,−1)T .

(b)

H =

2 1 0
1 2 1
0 1 −2

 and g =

3
1
1

 .
Solution: We have eT3He3 = −2. Set f(x) := 1

2
xTHx + gTx. Then f(te3) = −t2 + t so that

f(te3) ↓ −∞ as t ↑ +∞, so the optimal value is −∞.

(c)

H =

 5 2 −1
2 1 −1
−1 −1 2

 and g =

3
1
0

 .
Solution: Observe that the principal minors of H are 5, 1, and 0. So H is not positive definite.
We also know that the set of solutions to the equation 0 = Hx+ g is

x =

 1
−1
0

 + t

 1
−3
−1

 ∀ t ∈ R.



Also observe that 〈g , (1, −3, −1)〉 = 0 If we can show that H is positive semidefinite, then
this is the set of optimal solutions to Q. For this we use part (1) of Lemma 3.1 on page 29 of the

course text. First observe that H is of the form

[
Ĥ u
ut α

]
, where Ĥ :=

[
5 2
2 1

]
, u = (−1, −1)T

and α = 2. Our computation of the principal minors shows that the matrix Ĥ is positive
definite. Solving the equation Ĥz = u gives z = (1, −3)T , and zT Ĥz = 2. Consequently, H is
positive definite, and we have completely specified all optimal solutions to Q.

(5) Consider the matrix H ∈ R3×3 and vector g ∈ R3 given by

H =

1 4 1
4 20 2
1 2 2

 and g =

1
0
0

 .
Does there exists a vector u ∈ R3 such that f(tu)

t↑∞−→ −∞? If yes, construct u.

Solution: We can show that H is positive definite using the technique described in part (c) of

problem 3 above (Ĥ =

[
1 4
4 20

]
is positive definite, solve Ĥz =

[
1
2

]
to get z = (3, −1

2
) and note

that zT Ĥz = 2). However, the system 0 = Hx+ g is easily seen to be inconsistent, so the optimal
value is −∞. To obtain the desired vector u, we need to obtain a vector in the null space of H
whose inner product with g is non-zero. We compute the null space of H to be the span of the
vector u := (−6, 1, 2)T . The inner product of g with u is −6. Hence, if f(x) := 1

2
xTHx + gTx,

then f(tu) = −6t which goes to −∞ as t ↑ +∞.

(6) A mapping 〈· , ·〉 : Rn → Rn is said to be an inner product on Rn is for all x, y, z ∈ Rn

(i) 〈x , x〉 ≥ 0 Non-Negative
(ii) 〈x , x〉 = 0 ⇔ x = 0 Positive
(iii) 〈x+ y , z〉 = 〈x , z〉+ 〈y , z〉 Additive
(iv) 〈αx , y〉 = α〈x , y〉 ∀α ∈ R Homogeneous
(v) 〈x , y〉 = 〈y , x〉 Symmetric

Two vectors x, y ∈ Rn are said to be orthogonal in the inner product 〈· , ·〉 if 〈x , y〉 = 0

Unless otherwise specified, we use the notation 〈x , y〉 to designate the usual Euclidean inner prod-
uct:

〈x , y〉 =
n∑
i=1

xiyi .

(a) Let 〈x , y〉 be the Euclidean inner product on Rn. Given A ∈ Rn×n, show that A = 0 if and
only if

〈x , Ay〉 = 0 ∀ x, y ∈ Rn .

Solution: If A = 0, then 〈x , Ay〉 = 0. Conversely, note that Aij = 〈ei , Aej〉 = 0, where ei is
the vector with all zeros and a 1 in the ith position, so all the entries of A must be zero.

(b) Let H ∈ Rn×n be symmetric and positive definite (i.e. H = HT and xTHx > 0 ∀ x ∈ Rn\{0}).
Show that the bi-linear form given by

〈x , y〉H = xTHy ∀ x, y ∈ Rn

defines an inner product on Rn.



Solution: Properties (i) and (ii) are immediate from the definition of positive definite matrices.
Properties (iii) and (iv) follow from the linearity of matrix multiplication. Property (v) follows
from the symmetry of H.

(c) Every inner product defines a transformation on the space of linear operators called the ad-
joint. For the Euclidean inner product on Rn, this is just the usual transpose. Given a linear
transformation M : Rn → Rn, the adjoint is defined by the relation

〈y , Mx〉 = 〈M∗y , x〉, for all x, y,∈ Rn.

The inner product given above, 〈· , ·〉H , also defines an adjoint mapping which we can denote
by MTH . Show that

MTH = H−1MTH .

Solution:

〈y , Mx〉H = 〈y , HMx〉 = 〈MTHy , x〉 = 〈MTHy , H−1x〉H = 〈H−1MTHy , x〉H
Comparing the leftmost and rightmost expressions gives the result.

(d) The matrix P ∈ Rn×n is said to be a projection if P 2 = P . Clearly, if P is a projection, then
so is I − P . The subspace PRn = Ran (P ) is called the subspace that P projects onto. A
projection is said to be orthogonal with respect to a given inner product 〈· , ·〉 on Rn if and
only if

〈(I − P )x , Py〉 = 0 ∀ x, y ∈ Rn ,

that is, the subspaces Ran (P ) and Ran (I − P ) are orthogonal in the inner product 〈· , ·〉.
Show that the projection P is orthogonal with respect to the inner product 〈· , ·〉H (defined
above), where H ∈ Rn×n is symmetric and positive definite, if and only if

P = H−1P TH .

Solution: Note that

〈(I − P )x , Py〉H = 〈(I − P )x , HPy〉 = 〈P TH(I − P )x , y〉
If P = H−1P TH, then P TH(I − P ) = HPH−1H(I − P ) = HP (I − P ) = H(P − P ) = 0, so
the result follows.

For the converse, we have 〈P TH(I − P )x , y〉 = 0, so P TH(I − P ) = 0 by (a). Then P TH =
P THP , so P T = P THPH−1. Taking the transpose, we have P = H−1(P THP ) = H−1P TH
since P TH = P THP .


