
Math 408 Homework Set 2

This homework set will focus on the linear least squares problem

LLS min
x∈Rn

1

2
‖Ax− b‖22 ,

where A ∈ Rm×n and b ∈ Rm.

(1) Listed below are two functions. In each case write the problem minx f(x) as a linear least squares
problem by specifying the matrix A and the vector b, and then solve the associated problem.

SOLUTION METHOD:
Observe that

‖Ax− b‖22 := (A1· • x− b1)2 + (A2· • x− b2)2 + . . . (Am· • x− b1m)2 ,

where Ai· is the ith row of A. We apply this to the first function below. A similar procedure applies
to the second.

(a) f(x) = (2x1 − x2 + 1)2 + (x2 − x3)2 + (x3 − 1)2

Solution: Note that x ∈ R3 and three terms in the sum defining f so A ∈ R3×3 and b ∈ R3.
Using the description of ‖Ax− b‖22 given above, we have

(A1· • x− b1)2+ (A2· • x− b2)2+ (A3· • x− b3)2

(2x1 − x2 + 1)2+ (x2 − x3)2+ (x3 − 1)2

Therefore,

A =

2 −1 0
0 1 −1
0 0 1

 and b =

−1
0
1

 .

(b) f(x) = (1− x1)2 +
∑4

j=1(xj − xj+1)
2

(2) Consider the data points (λi, yi) ∈ R, (1, 1), (2, 0), (−1, 2), and (0,−1). We wish to determine a
real polynomial of degree 2 that best fits this data. A general real polynomial of degree 2 has the
form p(λ) = x0 + x1λ + x2λ

2, where x = (x0, x1, x2)
T ∈ R3. Note that there are more data points

that there are unknown coefficients x0, x1, and x2 and so it is unlikely that there exists a second
degree polynomial that fits this data precisely.

SOLUTION METHOD:
The solution technique for this problem is described on the first page of Chapter 2 in the notes (i.e.,
page 7).

(a) Write the problem of determining the quadratic polynomial that “best” fits this data as a
linear least squares problem by specifying the matrix A and the vector b.

Solution: Here we are trying to satisfy yi = x0 + x1λi + x2λ
2
i for the given data (λi, yi). The

associated linear least squares problem is to minimize the sum of the squares of the misfits:

(x0 + x1 + x2 − 1)2 + (x0 + 2x1 + 4x2)
2 + (x0 − x1 + x2 − 2)2 + (x0 + 1)2,

in which case

A =


1 1 1
1 2 4
1 −1 1
1 0 0

 and b =


1
0
2
−1

 .

1



(b) Solve this linear least squares problem.

Solution: Solve the linear least squares problem by solving the associated normal equations,
ATAx = AT b (see Theorem 2.1 on page 26 of the notes):

ATA =

4 2 6
2 6 8
6 8 18

 and AT b =

 2
−1
3

 .

Hence, x = (1/5, −9/10, 1/2)T which tells us that the polynomial of degree two that best fits

this data in the least squares sense is λ2

2
− 9λ

10
+ 1

5
.

(3) Find the quadratic polynomial p(t) = x0 + x1t + x2t
2 that best fits the following data in the

least-squares sense:

t −2 −1 0 1 2
y 2 −10 0 2 1

.

Solution: Apply the same procedure as described in problem (2) above.

(4) Consider the problem LLS with

A =


1 −1 0
1 1 2
1 −1 0
1 1 2

 and b =


1
1
1
0

 .
(a) What are the normal equations for this A and b.

Solution: The normal equations are ATAx = AT b (see Theorem 2.1 on page 13 of the notes),
where

ATA =

4 0 4
0 4 4
4 4 8

 and AT b =

 3
−1
2

 .

(b) Solve the normal equations to obtain a solution to the problem LLS for this A and b.

Solution: The set of all solutions to the normal equations are

x =
1

4

 3
−1
0

 + t

 1
1
−1

 t ∈ R .

(c) What is the general reduced QR factorization for this matrix A?

Solution:

QR =


1/2 −1/2
1/2 1/2
1/2 −1/2
1/2 1/2

[2 0 2
0 2 2

]
.

(d) Compute the orthogonal projection onto the range of A.

Solution: Apply Lemma 3.1 on page 15 of the notes to answer this question. This lemma tells
us that we need to obtain an orthonormal basis for the range of A, write these basis vectors as
the columns of a matrix Q, and then QQT is the orthogonal projection onto Ran(A).



Begin by applying the Gram-Schmidt orthogonalization process to the columns of A since the
range of A is the linear span of its columns. This yields the two vectors

q1 =
1

2


1
1
1
1

 and q2 =
1

2


1
−1
1
−1

 , so that Q =


1/2 −1/2
1/2 1/2
1/2 −1/2
1/2 1/2

 .
Notice that this matrix Q is the same matrix that appears in the QR factorization of A. The
orthogonal projection can now be written as

QQT =


1/2 0 1/2 0
0 1/2 0 1/2

1/2 0 1/2 0
0 1/2 0 1/2

 .

(e) Use the recipe

AP = Q[R1 R2] the general reduced QR factorization

b̂ = QT b a matrix-vector product

w̄1 = R−11 b̂ a back solve

x̄ = P

[
R−11 b̂

0

]
a matrix-vector product.

to solve LLS for this A and b.

Solution:

b̂ = QT b =

(
3/2
−1/2

)
w̄1 = R−11 b̂ =

[
2 0
0 2

]−1(
3
−1

)
=

(
3/4
−1/4

)

x̄ = P

[
R−11 b̂

0

]
=

 3/4
−1/4

0

 .

Note that this gives only the particular solution given in Part (b) above and not the entire
solution set. How might you recover the entire solution set from th QR factorization?

(f) If x̄ solves LLS for this A and b, what is Ax̄− b?
Solution:

Ax̄− b =
1

2


0
−1
0
1

 .

(5) Consider the matrix

A =


1 1 1
1 1 0
1 0 0
1 0 1

 .
SOLUTION METHOD:
In this problem we again apply Lemma 3.1 on page 15 of the notes, but we could also apply Corollary
5.1.2 on page 19 of the notes.



(a) Compute the orthogonal projection onto Ran(A).

Solution: After applying Gram-Schmidt to the columns of A and them writing them as the
columns of the matrix Q, we obtain

Q =
1

2


1 1 1
1 1 −1
1 −1 −1
1 −1 1

 .
This gives the orthogonal projection

QQT =
1

4


3 1 −1 1
1 3 1 −1
−1 1 3 1
1 −1 1 3

 .
(b) Compute the orthogonal projection onto Null(AT ).

Solution: Since Null(AT ) = Ran(A)⊥, the projection onto Null(AT ) is just I − QQT , where
Q is given above (see the discussion on page 28 of the notes):

I −QQT =
1

4


1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

 .
(6) Let A ∈ Rm×n. Show that Null(A) = Null(ATA).

Solution: See Lemma 2.1 on page 13 of the notes.

(7) Let A ∈ Rm×n be such that Null(A) = {0}.
(a) Show that ATA is invertible.

Solution: In problem (6) above we see that Null(A) = Null(ATA), and so Null(ATA) = {0}.
Since ATA is square, this implies that ATA is invertible.

(b) Show that the orthogonal projection onto Ran(A) is the matrix P := A(ATA)−1AT .

Solution: By Lemma 3.1 on page 15 of the notes, we need to show that P 2 = P, P T = P and
Ran(P ) = Ran(A). Direct computation shows that P 2 = P and P T = P . To see that Ran(P ) =
Ran(A) first note that for any y ∈ Rm set z = (ATA)−1ATy, then Py = A

[
(ATA)−1ATy

]
=

Az ∈ Ran(A). Consequently, Ran(P ) ⊂ Ran(A). On the other hand, if w ∈ Ran(A), there
is an x ∈ Rn such that w = Ax, hence, Pw = PAx = A(ATA)−1ATAx = Ax = w so that
Ran(A) ⊂ Ran(P ).


