Math 408

Homework Set 1

Linear Algebra Review Problems

(1) Consider the system

Solution: $(x_1, x_2, x_3)^T = (30, -150, -80)^T$

(2) Represent the linear span of the four vectors

$$x_{1} = \begin{bmatrix} 1\\0\\2\\1 \end{bmatrix}, \quad x_{2} = \begin{bmatrix} -1\\1\\1\\-2 \end{bmatrix}, \quad x_{3} = \begin{bmatrix} 2\\1\\7\\1 \end{bmatrix}, \text{ and } x_{4} = \begin{bmatrix} 3\\-2\\0\\5 \end{bmatrix},$$

as the range space of some matrix.

Solution:
$$\begin{bmatrix} 1 & -1 & 2 & 3 \\ 0 & 1 & 1 & -2 \\ 2 & 1 & 7 & 0 \\ 1 & -2 & 1 & 5 \end{bmatrix}$$

(3) Compute a basis for nul $(A^T)^{\perp}$ where A is given by

$$A = \begin{bmatrix} 1 & -1 & 2 & 3\\ 0 & 1 & 1 & -2\\ 2 & 1 & 7 & 0\\ 1 & -2 & 1 & 5 \end{bmatrix}$$

Solution: Since nul $(A^T)^{\perp}$ = Ran(A), we only need to row reduce A^T to get the basis $u_1 := (1, 0, 2, 0)^T$, $u_2 := (0, 1, 3, 0)^T$, $u_3 := (0, 0, 0, 1)$.

(4) Find the inverse of the matrix
$$B = \begin{pmatrix} 1 & 2 & 0 \\ -1 & -4 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$
. Solution: $B^{-1} = \frac{1}{4} \begin{pmatrix} 6 & 2 & -2 \\ -1 & -1 & 1 \\ 2 & 2 & 2 \end{pmatrix}$.

(5) Solve the following system of linear equations

Solution: $B^{-1} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 10 \\ -3 \\ 6 \end{pmatrix}$.

(6) Determine whether the following system of linear equations has a solution or not.

$$\begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 1 & 0 \\ 0 & -1 & -1 & 0 & 1 \\ 0 & 0 & 0 & -1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ -2 \\ 0 \end{pmatrix}.$$

Solution: No solution exists since the augmented matrix can be reduced to

$$\begin{bmatrix} 1 & 0 & -1 & -1 & 0 & | & 2 \\ 0 & 0 & 0 & 1 & 1 & | & 1 \\ 0 & 0 & 0 & 0 & 0 & | & 1 \\ 0 & 0 & 0 & 0 & 0 & | & 1 \end{bmatrix}$$

(7) Find a 2 by 2 square matrix B satisfying

$$A = B \cdot C$$

where $A = \begin{pmatrix} 1 & 3 & 0 \\ 2 & 1 & 1 \end{pmatrix}$ and $C = \begin{pmatrix} -1 & -3 & 0 \\ 8 & 9 & 3 \end{pmatrix}$.
Solution: $B = \frac{1}{3} \begin{bmatrix} -3 & 0 \\ 2 & 1 \end{bmatrix}$.

(8) Show that the Gaussian elimination matrix for the vector

$$v = \left[\begin{array}{c} a \\ \alpha \\ b \end{array} \right]$$

where the pivot $\alpha \in \mathbb{R}$ is non-zero, $a \in \mathbb{R}^k$, and $b \in \mathbb{R}^{(n-(k+1))}$ is non-singular by providing an expression for its inverse.

(9) What is the Gaussian elimination matrix for the vector

$$v = \begin{bmatrix} 2\\ -10\\ 16\\ 2 \end{bmatrix}?$$

where the entry $x_1 = 2$ is the pivot? What is it if the pivot is $x_2 = -10$? Solution: $x_2 = -10$

Gauss:
$$G := \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 8/5 & 1 & 0 \\ 0 & 1/5 & 0 & 1 \end{bmatrix}$$
 Gauss-Jordan: $J := \begin{bmatrix} 1 & 1/5 & 0 & 0 \\ 0 & -1/10 & 0 & 0 \\ 0 & 8/5 & 1 & 0 \\ 0 & 1/5 & 0 & 1 \end{bmatrix}$

(10) Let $A = (a_{ij}) \in \mathbb{R}^{k \times n}$ and $B = (b_{ij}) \in \mathbb{R}^{k \times m}$ where a_{ij} and b_{ij} is the ij^{th} elements of A and B, respectively. Denote the i^{th} row of A by a_{i} . (a row vector) and the j^{th} column of B by $b_{\cdot j}$ (a column vector). By construction, $A^T B \in \mathbb{R}^{n \times m}$. If $(A^T B)_{ij}$ is the ij^{th} element if $A^T B$, show that $(A^T B)_{ij} = (a_{i} \cdot b_{\cdot j})$.

Solution: By the definition of matrix multiplication, $(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = a_{i.b.j}$ which yields the result.

(11) Show that the product of two lower triangular $n \times n$ matrices is always a lower triangular matrix.

Solution: Let $A, B \in \mathbb{R}^{n \times n}$ be lower triangular. Let a_i be the rows of A, i = 1, ..., n, and let b_{j} be the columns of B, j = 1, ..., n. Since A and B are lower triangular, we have $a_{ik} = 0$ for k > i and $b_{kj} = 0$ for k < j, for all $i, j \in \{1, 2, ..., n\}$. Let i < j. By the previous problem,

$$(AB)_{ij} = a_{i} \cdot b_{\cdot j} = \sum_{k=1}^{j-1} a_{ik} b_{kj} + \sum_{k=j}^{n} a_{ik} b_{kj} .$$

Since k < j in the first summand above, $b_{kj} = 0$ for k = 1, ..., j - 1 so that the first summand is zero. Also, since $k \ge j > i$ in the second summand above, $a_{ik} = 0$ for k = j, ..., n so that the second summand is zero as well. Consequently, $(AB)_{ij} = 0$ for all $i, j \in \{1, 2, ..., n\}$ with i < j, or equivalently, AB is lower triangular.

(12) Show that the inverse of a non-singular lower triangular matrix is always lower triangular.

Solution: Let $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ be a nonsingular lower triangular matrix so that $0 \neq \det A = a_{11}a_{22}\cdots a_{nn}$. Consequently, the diagonal of A has no zeros. Let B be the inverse of A. If B is not lower triangular, then there is a smallest $i_0 \in \{1, \ldots, n-1\}$ for which there is a $j_0 > i_0$ with $b_{i_0j_0} \neq 0$. By definition, $b_{sj_0} = 0$ for $s < i_0$. Then, as above,

$$0 = (AB)_{i_0 j_0} = a_{i_0} \cdot b_{\cdot j_0} = \sum_{s=1}^{i_0 - 1} a_{j_0 s} b_{s i_0} + a_{i_0 i_0} b_{i_0 j_0} + \sum_{s=i_0 + 1}^n a_{i_0 s} b_{s j_0}$$

Since $b_{sj_0} = 0$ for $s < i_0$, the first summand is zero. The second summand is also zero since $a_{i_0s} = 0$ for $s > i_0$. But $a_{i_0i_0} \neq 0$ and $b_{i_0j_0} \neq 0$ so that $a_{i_0i_0}b_{i_0j_0} \neq 0$. This contradiction implies that no such $b_{i_0j_0} \neq 0$ can exist, that is, B is lower triangular.

(13) A Housholder transformation on \mathbb{R}^n is any $n \times n$ matrix of the form

$$P = I - 2\frac{vv^T}{v^T v}$$

for some non-zero vector $v \in \mathbb{R}^n$. The Householder transformation is the reflection across the hyperplane $v^T x = 0$.

(a) Given any two vectors u and w in \mathbb{R}^n such that ||u|| = ||w|| and $u \neq w$, if P is the Householder transformation based on the vector v := u - w, show that Pu = w.

Solution: Since $u \neq w$ and ||u|| = ||w||, we have $0 \neq v^T v = ||u||^2 - 2w^T u + ||w||^2 = 2(||u||^2 - w^T u)$. Hence $(I - 2\frac{vv^T}{v^Tv})u = u - 2(u - w)\frac{||u||^2 - w^Tu}{2(||u||^2 - w^Tu)} = w$.

(b) If

$$u = \begin{bmatrix} 3\\1\\5\\1 \end{bmatrix} \quad \text{and} \quad w = \begin{bmatrix} -6\\0\\0\\0 \end{bmatrix},$$

explicitly construct the Householder transformation for which Pu = w.

Solution:
$$P = -$$
$$\begin{vmatrix} 1/2 & 1/6 & 5/6 & 1/6 \\ 1/6 & -53/54 & 5/54 & 53/54 \\ 5/6 & 5/54 & -29/54 & /54 \\ 1/6 & 1/54 & 5/54 & -53/54 \end{vmatrix}$$

(c) Show that every Householder transformation P satisfies $P^T = P$ and $P^2 = I$.

Multi-variable Calculus Review Problems

- (1) Find the local and global minimizers and maximizers of the following functions.
 - (a) $f(x) = x^2 + 2x$

Solution: f'(x) = 2(x+1), f'(x) = 2. Global max at x = -1.

(b) $f(x) = x^2 e^{-x^2}$

Solution: $f(x) \ge 0 \ \forall x \text{ and } f'(x) = 2xe^{-x^2}(1-x^2)$. Global min at x = 0 and global max at $x = \pm 1.$

(c) $f(x) = x^2 + \cos x$

Solution: $f'(x) = 2x - \sin x$, $f'(x) = 2 - \cos x > 0 \ \forall x$. Global min at x = 0.

(d) $f(x) = x^3 - x$

Solution: $f(x) = x(x-1)(x_1), f'(x) = 3x^2 - 1, f'(x) = 6x$. Local max at $x = -\frac{1}{\sqrt{3}}$, local min at $x = \frac{1}{\sqrt{2}}$.

(2) and (3) Compute the gradient and Hessian of the following functions. In the solutions below, for $x \in \mathbb{R}^n$, diag (x) is the $n \times n$ diagonal matrix with diagonal entries given by the vector x in the order given. (a) $f(x) = x_1^3 + x_2^3 - 3x_1 - 15x_2 + 25$: $f: \mathbb{R}^2 \to \mathbb{R}$

Solution:
$$\nabla f(x) = \begin{pmatrix} 3x_1^2 - 3\\ 3x_2 - 15 \end{pmatrix}, \ \nabla^2 f(x) = 6 \text{diag}(x_1, x_2)$$

(b) $f(x) = x_1^2 + x_2^2 - \sin(x_1 x_2) \qquad f : \mathbb{R}^2 \to \mathbb{R}$
Solution: $\nabla f(x) = \begin{pmatrix} 2x_1 - x_2 \cos(x_1 x_2)\\ 2x_2 - x_1 \cos(x_1 x_2) \end{pmatrix}, \ \nabla f(x) = \begin{pmatrix} 2 + x_2^2 \sin(x_1 x_2) & x_1 x_2 \sin(x_1 x_2) - \cos(x_1 x_2)\\ 2x_2 - x_1 \cos(x_1 x_2) \end{pmatrix}$

- (c) $f(x) = ||x||^2 = \sum_{i=1}^n x_i^2$: $f: \mathbb{R}^n \to \mathbb{R}$ **Solution:** $\nabla f(x) = 2x, \ \nabla^2 f(x) = 2I$
- (d) $f(x) = e^{\|x\|^2}$

Solution:
$$\nabla f(x) = 2xe^{\|x\|^2}, \ \nabla^2 f(x) = 2e^{\|x\|^2}(I + 2xx^T)$$

(e)
$$f(x) = x_1 x_2 x_3 \cdots x_n$$
: $f : \mathbb{R}^n \to \mathbb{R}$

Solution:
$$\nabla f(x) = \begin{pmatrix} x_2 x_3 \cdots x_n \\ x_1 x_3 \cdots x_n \\ \vdots \\ x_1 x_2 \cdots x_{n-1} \end{pmatrix}, \ \nabla^2 f(x) = \begin{pmatrix} 0 & x_3 x_2 \cdots x_n & x_2 x_4 \cdots x_n & \cdots & x_2 x_3 \cdots x_{n-1} \\ x_3 x_4 \cdots x_n & 0 & x_1 x_3 \cdots x_n & \cdots & x_1 x_3 \cdots x_{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_2 \cdots x_{n-1} & x_1 x_3 \cdots x_{n-1} & \cdots & \cdots & 0 \end{pmatrix}$$

(f) $f(x) = -\log(x_1x_2x_3\cdots x_n)$ for $x_j > 0, j = 1, \dots, n$, and undefined otherwise: $f: \mathbb{R}^n \to \mathbb{R}.$ Compute $\nabla f(x)$ for $x_j > 0, \ j = 1, \dots n$. 5

Solution:
$$\nabla f(x) = (-1/x_1, -1/x_2, \cdots, -1/x_n)^T, \ \nabla^2 f(x) = \operatorname{diag}(1/x_1^2, 1/x_2^2, \cdots, 1/x_n^2)$$

(4) Let $b \in \mathbb{R}^m$ and consider the matrix $A \in \mathbb{R}^{m \times n}$ given by

$$A := \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}$$

and define the column vectors

$$a_{i:} := \begin{pmatrix} a_{i1} \\ a_{i2} \\ a_{i3} \\ \vdots \\ a_{in} \end{pmatrix} \quad i = 1, 2, \dots, m \text{ and } a_{.j} := \begin{pmatrix} a_{1j} \\ a_{2j} \\ a_{3j} \\ \vdots \\ a_{mj} \end{pmatrix} \quad j = 1, 2, \dots, n .$$

- (a) Define $F_i : \mathbb{R}^n \to \mathbb{R}$ by $F_i(x) := a_i^T x$, i = 1, 2, ..., m. What are $\nabla F_i(x)$ and $\nabla^2 F_i(x)$? Solution: $\nabla F_i(x) = a_i$, $\nabla^2 F_i(x) = 0$
- (b) Define $h_i : \mathbb{R}^n \to \mathbb{R}$ by $h_i(x) := (a_i^T x b_i)^2/2$, i = 1, 2, ..., m. What are $\nabla h_i(x)$ and $\nabla^2 h_i(x)$? Solution: $\nabla h_i(x) = (a_i^T x - b_i)a_{i\cdot} = a_{i\cdot}a_{i\cdot}^T x - a_{i\cdot}b_i$, $\nabla^2 h_i(x) = a_{i\cdot}a_{i\cdot}^T$.
- (c) Define $F : \mathbb{R}^n \to \mathbb{R}^m$ by $F(x) := [F_1(x), \dots, F_m(x)]^T$. What is the Jacobian matrix for F? Solution: $\nabla F(x) = A$

т-

- (d) Define $h : \mathbb{R}^n \to \mathbb{R}$ by $h(x) = \sum_{i=1}^m h_i(x)$. Show that $h(x) = \frac{1}{2} ||F(x)||_2^2 = \frac{1}{2} ||Ax b||_2^2$. Solution: $h(x) = \sum_{i=1}^m h_i(x) = \frac{1}{2} \sum_{i=1}^m (a_{i}^T x - b_i)^2 = \frac{1}{2} ||Ax - b||^2$.
- (e) Show that $A^T A = \sum_{i=1}^m a_i a_i^T$.

Solution:
$$ATA = \begin{bmatrix} a_1 & a_2 & \cdots & a_m \end{bmatrix} \begin{bmatrix} a_1^T \\ a_2^T \\ \vdots \\ a_m^T \end{bmatrix} = \sum_{i=1}^m a_i a_i^T$$

(f) Given h as defined in (d) above, what are $\nabla h(x)$ and $\nabla^2 h(x)$? **Solution:** $\nabla h(x) = \sum_{i=1}^m \nabla h_i(x) = \sum_{i=1}^m a_{i\cdot}a_{i\cdot}^T x - a_{i\cdot}b_i = (\sum_{i=1}^m a_{i\cdot}a_{i\cdot}^T)x - A^T b = A^T A x - A^T b = A^T (Ax - b)$ and $\nabla^2 h(x) = A^T A$.