
Math 408 Homework Set 1

Linear Algebra Review Problems

(1) Consider the system

4x1 − x3 = 200
9x1 + x2 − x3 = 200
7x1 − x2 + 2x3 = 200 .

Solution: (x1, x2, x3)
T = (30, −150, −80)T

(2) Represent the linear span of the four vectors

x1 =


1
0
2
1

 , x2 =


−1

1
1
−2

 , x3 =


2
1
7
1

 , and x4 =


3
−2

0
5

 ,
as the range space of some matrix.

Solution:


1 −1 2 3
0 1 1 −2
2 1 7 0
1 −2 1 5


(3) Compute a basis for nul (AT )⊥ where A is given by

A =


1 −1 2 3
0 1 1 −2
2 1 7 0
1 −2 1 5

 .

Solution: Since nul (AT )⊥ = Ran (A), we only need to row reduce AT to get the basis u1 :=
(1, 0, 2, 0)T , u2 := (0, 1, 3, 0)T , u3 := (0, 0, 0, 1).

(4) Find the inverse of the matrix B =

 1 2 0
−1 −4 1
0 2 1

. Solution:B−1 = 1
4

 6 2 −2
−1 −1 1
2 2 2

.

(5) Solve the following system of linear equations

x1 + 2x2 = 1
−x1 − 4x2 + x3 = 2

2x2 + x3 = 0.

Solution: B−1

1
2
0

 = 1
4

10
−3
6

 .

1



(6) Determine whether the following system of linear equations has a solution or not.
1 1 0 0 0
−1 0 1 1 0
0 −1 −1 0 1
0 0 0 −1 −1



x1
x2
x3
x4
x5

 =


1
2
−2
0

 .

Solution: No solution exists since the augmented matrix can be reduced to
1 0 −1 −1 0 2
0 0 0 1 1 1
0 0 0 0 0 1
0 0 0 0 0 1


(7) Find a 2 by 2 square matrix B satisfying

A = B · C,

where A =

(
1 3 0
2 1 1

)
and C =

(
−1 −3 0
8 9 3

)
.

Solution: B = 1
3

[
−3 0
2 1

]
.

(8) Show that the Gaussian elimination matrix for the vector

v =

 a
α
b


where the pivot α ∈ R is non-zero, a ∈ Rk, and b ∈ R(n−(k+1)) is non-singular by providing an
expression for its inverse.

(9) What is the Gaussian elimination matrix for the vector

v =


2
−10
16
2

?

where the entry x1 = 2 is the pivot? What is it if the pivot is x2 = −10?

Solution: x2 = −10

Gauss: G :=


1 0 0 0
0 1 0 0
0 8/5 1 0
0 1/5 0 1

 Gauss-Jordan: J :=


1 1/5 0 0
0 −1/10 0 0
0 8/5 1 0
0 1/5 0 1


(10) Let A = (aij) ∈ Rk×n and B = (bij) ∈ Rk×m where aij and bij is the ijth elements of A and

B, respectively. Denote the ith row of A by ai· (a row vector) and the jth column of B by b·j (a
column vector). By construction, ATB ∈ Rn×m. If (ATB)ij is the ijth element if ATB, show that
(ATB)ij = (ai·b·j).

Solution: By the definition of matrix multiplication, (AB)ij =
∑n

k=1 aikbkj = ai·b·j which yields
the result.



(11) Show that the product of two lower triangular n× n matrices is always a lower triangular matrix.

Solution: Let A,B ∈ Rn×n be lower triangular. Let ai· be the rows of A, i = 1, . . . , n, and let b·j
be the columns of B, j = 1, . . . , n. Since A and B are lower triangular, we have aik = 0 for k > i
and bkj = 0 for k < j, for all i, j ∈ {1, 2, . . . , n}. Let i < j. By the previous problem,

(AB)ij = ai·b·j =

j−1∑
k=1

aikbkj +
n∑

k=j

aikbkj .

Since k < j in the first summand above, bkj = 0 for k = 1, . . . , j − 1 so that the first summand
is zero. Also, since k ≥ j > i in the second summand above, aik = 0 for k = j, . . . , n so that the
second summand is zero as well. Consequently, (AB)ij = 0 for all i, j ∈ {1, 2, . . . , n} with i < j, or
equivalently, AB is lower triangular.

(12) Show that the inverse of a non-singular lower triangular matrix is always lower triangular.

Solution: Let A = (aij) ∈ Rn×n be a nonsingular lower triangular matrix so that 0 6= detA =
a11a22 · · · ann. Consequently, the diagonal of A has no zeros. Let B be the inverse of A. If B is
not lower triangular, then there is a smallest i0 ∈ {1, . . . , n − 1} for which there is a j0 > i0 with
bi0j0 6= 0. By definition, bsj0 = 0 for s < i0. Then, as above,

0 = (AB)i0j0 = ai0·b·j0 =

i0−1∑
s=1

aj0sbsi0 + ai0i0bi0j0 +
n∑

s=i0+1

ai0sbsj0 .

Since bsj0 = 0 for s < i0, the first summand is zero. The second summand is also zero since ai0s = 0
for s > i0. But ai0i0 6= 0 and bi0j0 6= 0 so that ai0i0bi0j0 6= 0. This contradiction implies that no such
bi0j0 6= 0 can exist, that is, B is lower triangular.

(13) A Housholder transformation on Rn is any n× n matrix of the form

P = I − 2
vvT

vTv
for some non-zero vector v ∈ Rn. The Householder transformation is the reflection across the
hyperplane vTx = 0.
(a) Given any two vectors u and w in Rn such that ‖u‖ = ‖w‖ and u 6= w, if P is the Householder

transformation based on the vector v := u− w, show that Pu = w.

Solution: Since u 6= w and ‖u‖ = ‖w‖, we have 0 6= vTv = ‖u‖2 − 2wTu + ‖w‖2 = 2(‖u‖2 −
wTu). Hence (I − 2vvT

vT v
)u = u− 2(u− w) ‖u‖

2−wTu
2(‖u‖2−wTu)

= w.

(b) If

u =


3
1
5
1

 and w =


−6
0
0
0

 ,
explicitly construct the Householder transformation for which Pu = w.

Solution: P = −


1/2 1/6 5/6 1/6
1/6 −53/54 5/54 53/54
5/6 5/54 −29/54 /54
1/6 1/54 5/54 −53/54

 .



(c) Show that every Householder transformation P satisfies P T = P and P 2 = I.

Multi-variable Calculus Review Problems

(1) Find the local and global minimizers and maximizers of the following functions.
(a) f(x) = x2 + 2x

Solution: f ′(x) = 2(x+ 1), f ′(x) = 2. Global max at x = −1.

(b) f(x) = x2e−x
2

Solution: f(x) ≥ 0 ∀x and f ′(x) = 2xe−x
2
(1 − x2). Global min at x = 0 and global max at

x = ±1.

(c) f(x) = x2 + cosx

Solution: f ′(x) = 2x− sinx, f ′(x) = 2− cosx > 0 ∀x. Global min at x = 0.

(d) f(x) = x3 − x

Solution: f(x) = x(x − 1)(x1), f
′(x) = 3x2 − 1, f ′(x) = 6x. Local max at x = − 1√

3
, local

min at x = 1√
3
.

(2) and (3) Compute the gradient and Hessian of the following functions. In the solutions below, for x ∈ Rn,
diag (x) is the n×n diagonal matrix with diagonal entries given by the vector x in the order given.
(a) f(x) = x31 + x32 − 3x1 − 15x2 + 25 : f : R2 → R

Solution:∇f(x) =

(
3x21 − 3
3x2 − 15

)
, ∇2f(x) = 6diag (x1, x2)

(b) f(x) = x21 + x22 − sin(x1x2) f : R2 → R

Solution:∇f(x) =

(
2x1 − x2 cos(x1x2)
2x2 − x1 cos(x1x2)

)
, ∇f(x) =

(
2 + x22 sin(x1x2) x1x2 sin(x1x2)− cos(x1x2)x1x2 sin(x1x2)− cos(x1x2) 2 + x21 sin(x1x2)

)
(c) f(x) = ‖x‖2 =

∑n
j=1 x

2
j : f : Rn → R

Solution:∇f(x) = 2x, ∇2f(x) = 2I

(d) f(x) = e‖x‖
2

Solution:∇f(x) = 2xe‖x‖
2

, ∇2f(x) = 2e‖x‖
2

(I + 2xxT )

(e) f(x) = x1x2x3 · · ·xn : f : Rn → R

Solution: ∇f(x) =


x2x3 · · ·xn

x1x3 · · ·xn

...
x1x2 · · ·xn−1

 , ∇2f(x) =


0 x3x2 · · ·xn x2x4 · · ·xn · · · x2x3 · · ·xn−1

x3x4 · · ·xn 0 x1x3 · · ·xn · · · x1x3 · · ·xn−1

...
...

...
...

...
x2 · · ·xn−1 x1x3 · · ·xn−1 · · · · · · 0


(f) f(x) = − log(x1x2x3 · · ·xn) for xj > 0, j = 1, . . . n, and undefined otherwise: f : Rn → R.

Compute ∇f(x) for xj > 0, j = 1, . . . n.

Solution:∇f(x) = (−1/x1, −1/x2, · · · , −1/xn)T , ∇2f(x) = diag (1/x21, 1/x22, · · · , 1/x2n)



(4) Let b ∈ Rm and consider the matrix A ∈ Rm×n given by

A :=


a11 a12 a13 . . . . . . a1n
a21 a22 a23 . . . . . . a2n
...

. . .
...

am1 am2 am3 . . . . . . amn


and define the column vectors

ai· :=


ai1
ai2
ai3
...
ain

 i = 1, 2, . . . ,m and a·j :=


a1j
a2j
a3j
...
amj

 j = 1, 2, . . . , n .

(a) Define Fi : Rn → R by Fi(x) := aTi·x, i = 1, 2, . . . ,m. What are ∇Fi(x) and ∇2Fi(x)?

Solution: ∇Fi(x) = ai·, ∇2Fi(x) = 0

(b) Define hi : Rn → R by hi(x) := (aTi·x− bi)2/2, i = 1, 2, . . . ,m. What are ∇hi(x) and ∇2hi(x)?

Solution: ∇hi(x) = (aTi·x− bi)ai· = ai·a
T
i·x− ai·bi, ∇2hi(x) = ai·a

T
i·

(c) Define F : Rn → Rm by F (x) := [F1(x), . . . , Fm(x)]T . What is the Jacobian matrix for F?

Solution: ∇F (x) = A

(d) Define h : Rn → R by h(x) =
∑m

i=1 hi(x). Show that h(x) = 1
2
‖F (x)‖22 = 1

2
‖Ax− b‖22.

Solution: h(x) =
∑m

i=1 hi(x) = 1
2

∑m
i=1(a

T
i·x− bi)2 = 1

2
‖Ax− b‖2.

(e) Show that ATA =
∑m

i=1 ai·a
T
i· .

Solution: ATA =
[
a1· a2· · · · am·

] 
aT1·
aT2·
...
aTm·

 =
∑m

i=1 ai·a
T
i·

(f) Given h as defined in (d) above, what are ∇h(x) and ∇2h(x)?

Solution: ∇h(x) =
∑m

i=1∇hi(x) =
∑m

i=1 ai·a
T
i·x − ai·bi = (

∑m
i=1 ai·a

T
i· )x − AT b = ATAx − AT b =

AT (Ax− b) and ∇2h(x) = ATA .


