Linear Algebra Review Problems

(1) Consider the system

$$
\begin{aligned}
& 4 x_{1}-x_{3}=200 \\
& 9 x_{1}+x_{2}-x_{3}=200 \\
& 7 x_{1}-x_{2}+2 x_{3}=200
\end{aligned}
$$

Solution: $\left(x_{1}, x_{2}, x_{3}\right)^{T}=(30,-150,-80)^{T}$
(2) Represent the linear span of the four vectors

$$
x_{1}=\left[\begin{array}{l}
1 \\
0 \\
2 \\
1
\end{array}\right], \quad x_{2}=\left[\begin{array}{r}
-1 \\
1 \\
1 \\
-2
\end{array}\right], \quad x_{3}=\left[\begin{array}{l}
2 \\
1 \\
7 \\
1
\end{array}\right], \quad \text { and } \quad x_{4}=\left[\begin{array}{r}
3 \\
-2 \\
0 \\
5
\end{array}\right]
$$

as the range space of some matrix.
Solution: $\left[\begin{array}{cccc}1 & -1 & 2 & 3 \\ 0 & 1 & 1 & -2 \\ 2 & 1 & 7 & 0 \\ 1 & -2 & 1 & 5\end{array}\right]$
(3) Compute a basis for $\operatorname{nul}\left(A^{T}\right)^{\perp}$ where A is given by

$$
A=\left[\begin{array}{rrrr}
1 & -1 & 2 & 3 \\
0 & 1 & 1 & -2 \\
2 & 1 & 7 & 0 \\
1 & -2 & 1 & 5
\end{array}\right]
$$

Solution: Since nul $\left(A^{T}\right)^{\perp}=\operatorname{Ran}(A)$, we only need to row reduce A^{T} to get the basis $u_{1}:=$ $(1,0,2,0)^{T}, u_{2}:=(0,1,3,0)^{T}, u_{3}:=(0,0,0,1)$.
(4) Find the inverse of the matrix $B=\left(\begin{array}{ccc}1 & 2 & 0 \\ -1 & -4 & 1 \\ 0 & 2 & 1\end{array}\right)$. Solution: $B^{-1}=\frac{1}{4}\left(\begin{array}{ccc}6 & 2 & -2 \\ -1 & -1 & 1 \\ 2 & 2 & 2\end{array}\right)$.
(5) Solve the following system of linear equations

$$
\begin{aligned}
x_{1}+2 x_{2} & =1 \\
-x_{1}-4 x_{2}+x_{3} & =2 \\
2 x_{2}+x_{3} & =0
\end{aligned}
$$

Solution: $B^{-1}\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)=\frac{1}{4}\left(\begin{array}{c}10 \\ -3 \\ 6\end{array}\right)$.
(6) Determine whether the following system of linear equations has a solution or not.

$$
\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
-1 & 0 & 1 & 1 & 0 \\
0 & -1 & -1 & 0 & 1 \\
0 & 0 & 0 & -1 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
1 \\
2 \\
-2 \\
0
\end{array}\right)
$$

Solution: No solution exists since the augmented matrix can be reduced to

$$
\left[\begin{array}{rrrrr|r}
1 & 0 & -1 & -1 & 0 & 2 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

(7) Find a 2 by 2 square matrix B satisfying

$$
A=B \cdot C
$$

where $A=\left(\begin{array}{lll}1 & 3 & 0 \\ 2 & 1 & 1\end{array}\right)$ and $C=\left(\begin{array}{ccc}-1 & -3 & 0 \\ 8 & 9 & 3\end{array}\right)$.
Solution: $B=\frac{1}{3}\left[\begin{array}{cc}-3 & 0 \\ 2 & 1\end{array}\right]$.
(8) Show that the Gaussian elimination matrix for the vector

$$
v=\left[\begin{array}{l}
a \\
\alpha \\
b
\end{array}\right]
$$

where the pivot $\alpha \in \mathbb{R}$ is non-zero, $a \in \mathbb{R}^{k}$, and $b \in \mathbb{R}^{(n-(k+1))}$ is non-singular by providing an expression for its inverse.
(9) What is the Gaussian elimination matrix for the vector

$$
v=\left[\begin{array}{c}
2 \\
-10 \\
16 \\
2
\end{array}\right] ?
$$

where the entry $x_{1}=2$ is the pivot? What is it if the pivot is $x_{2}=-10$?
Solution: $x_{2}=-10$

$$
\text { Gauss: } G:=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 8 / 5 & 1 & 0 \\
0 & 1 / 5 & 0 & 1
\end{array}\right] \quad \text { Gauss-Jordan: } J:=\left[\begin{array}{cccc}
1 & 1 / 5 & 0 & 0 \\
0 & -1 / 10 & 0 & 0 \\
0 & 8 / 5 & 1 & 0 \\
0 & 1 / 5 & 0 & 1
\end{array}\right]
$$

(10) Let $A=\left(a_{i j}\right) \in \mathbb{R}^{k \times n}$ and $B=\left(b_{i j}\right) \in \mathbb{R}^{k \times m}$ where $a_{i j}$ and $b_{i j}$ is the $i j^{\text {th }}$ elements of A and B, respectively. Denote the $i^{\text {th }}$ row of A by a_{i}. (a row vector) and the $j^{\text {th }}$ column of B by $b_{\cdot j}$ (a column vector). By construction, $A^{T} B \in \mathbb{R}^{n \times m}$. If $\left(A^{T} B\right)_{i j}$ is the $i j^{\text {th }}$ element if $A^{T} B$, show that $\left(A^{T} B\right)_{i j}=\left(a_{i} \cdot b_{\cdot j}\right)$.
Solution: By the definition of matrix multiplication, $(A B)_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}=a_{i} \cdot b_{\cdot j}$ which yields the result.
(11) Show that the product of two lower triangular $n \times n$ matrices is always a lower triangular matrix.

Solution: Let $A, B \in \mathbb{R}^{n \times n}$ be lower triangular. Let a_{i}. be the rows of $A, i=1, \ldots, n$, and let $b_{\cdot j}$ be the columns of $B, j=1, \ldots, n$. Since A and B are lower triangular, we have $a_{i k}=0$ for $k>i$ and $b_{k j}=0$ for $k<j$, for all $i, j \in\{1,2, \ldots, n\}$. Let $i<j$. By the previous problem,

$$
(A B)_{i j}=a_{i} \cdot b_{\cdot j}=\sum_{k=1}^{j-1} a_{i k} b_{k j}+\sum_{k=j}^{n} a_{i k} b_{k j} .
$$

Since $k<j$ in the first summand above, $b_{k j}=0$ for $k=1, \ldots, j-1$ so that the first summand is zero. Also, since $k \geq j>i$ in the second summand above, $a_{i k}=0$ for $k=j, \ldots, n$ so that the second summand is zero as well. Consequently, $(A B)_{i j}=0$ for all $i, j \in\{1,2, \ldots, n\}$ with $i<j$, or equivalently, $A B$ is lower triangular.
(12) Show that the inverse of a non-singular lower triangular matrix is always lower triangular.

Solution: Let $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ be a nonsingular lower triangular matrix so that $0 \neq \operatorname{det} A=$ $a_{11} a_{22} \cdots a_{n n}$. Consequently, the diagonal of A has no zeros. Let B be the inverse of A. If B is not lower triangular, then there is a smallest $i_{0} \in\{1, \ldots, n-1\}$ for which there is a $j_{0}>i_{0}$ with $b_{i_{0} j_{0}} \neq 0$. By definition, $b_{s j_{0}}=0$ for $s<i_{0}$. Then, as above,

$$
0=(A B)_{i_{0} j_{0}}=a_{i_{0}} \cdot b_{\cdot j_{0}}=\sum_{s=1}^{i_{0}-1} a_{j_{0} s} b_{s i_{0}}+a_{i_{0} i_{0}} b_{i_{0} j_{0}}+\sum_{s=i_{0}+1}^{n} a_{i_{0} s} b_{s j_{0}} .
$$

Since $b_{s j_{0}}=0$ for $s<i_{0}$, the first summand is zero. The second summand is also zero since $a_{i_{0} s}=0$ for $s>i_{0}$. But $a_{i_{0} i_{0}} \neq 0$ and $b_{i_{0} j_{0}} \neq 0$ so that $a_{i_{0} i_{0}} b_{i_{0} j_{0}} \neq 0$. This contradiction implies that no such $b_{i_{0} j_{0}} \neq 0$ can exist, that is, B is lower triangular.
(13) A Housholder transformation on \mathbb{R}^{n} is any $n \times n$ matrix of the form

$$
P=I-2 \frac{v v^{T}}{v^{T} v}
$$

for some non-zero vector $v \in \mathbb{R}^{n}$. The Householder transformation is the reflection across the hyperplane $v^{T} x=0$.
(a) Given any two vectors u and w in \mathbb{R}^{n} such that $\|u\|=\|w\|$ and $u \neq w$, if P is the Householder transformation based on the vector $v:=u-w$, show that $P u=w$.
Solution: Since $u \neq w$ and $\|u\|=\|w\|$, we have $0 \neq v^{T} v=\|u\|^{2}-2 w^{T} u+\|w\|^{2}=2\left(\|u\|^{2}-\right.$ $w^{T} u$). Hence $\left(I-2 \frac{v v^{T}}{v^{T} v}\right) u=u-2(u-w) \frac{\|u\|^{2}-w^{T} u}{2\left(\|u\|^{2}-w^{T} u\right)}=w$.
(b) If

$$
u=\left[\begin{array}{l}
3 \\
1 \\
5 \\
1
\end{array}\right] \quad \text { and } \quad w=\left[\begin{array}{c}
-6 \\
0 \\
0 \\
0
\end{array}\right]
$$

explicitly construct the Householder transformation for which $P u=w$.
Solution: $P=-\left[\begin{array}{cccc}1 / 2 & 1 / 6 & 5 / 6 & 1 / 6 \\ 1 / 6 & -53 / 54 & 5 / 54 & 53 / 54 \\ 5 / 6 & 5 / 54 & -29 / 54 & / 54 \\ 1 / 6 & 1 / 54 & 5 / 54 & -53 / 54\end{array}\right]$.
(c) Show that every Householder transformation P satisfies $P^{T}=P$ and $P^{2}=I$.

Multi-variable Calculus Review Problems

(1) Find the local and global minimizers and maximizers of the following functions.
(a) $f(x)=x^{2}+2 x$

Solution: $f^{\prime}(x)=2(x+1), f^{\prime}(x)=2$. Global max at $x=-1$.
(b) $f(x)=x^{2} e^{-x^{2}}$

Solution: $f(x) \geq 0 \forall x$ and $f^{\prime}(x)=2 x e^{-x^{2}}\left(1-x^{2}\right)$. Global min at $x=0$ and global max at $x= \pm 1$.
(c) $f(x)=x^{2}+\cos x$

Solution: $f^{\prime}(x)=2 x-\sin x, f^{\prime}(x)=2-\cos x>0 \forall x$. Global min at $x=0$.
(d) $f(x)=x^{3}-x$

Solution: $f(x)=x(x-1)\left(x_{1}\right), f^{\prime}(x)=3 x^{2}-1, f^{\prime}(x)=6 x$. Local max at $x=-\frac{1}{\sqrt{3}}$, local \min at $x=\frac{1}{\sqrt{3}}$.
(2) and (3) Compute the gradient and Hessian of the following functions. In the solutions below, for $x \in \mathbb{R}^{n}$, $\operatorname{diag}(x)$ is the $n \times n$ diagonal matrix with diagonal entries given by the vector x in the order given.
(a) $f(x)=x_{1}^{3}+x_{2}^{3}-3 x_{1}-15 x_{2}+25: \quad f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

Solution: $\nabla f(x)=\binom{3 x_{1}^{2}-3}{3 x_{2}-15}, \nabla^{2} f(x)=6 \operatorname{diag}\left(x_{1}, x_{2}\right)$
(b) $f(x)=x_{1}^{2}+x_{2}^{2}-\sin \left(x_{1} x_{2}\right) \quad f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

Solution: $\nabla f(x)=\binom{2 x_{1}-x_{2} \cos \left(x_{1} x_{2}\right)}{2 x_{2}-x_{1} \cos \left(x_{1} x_{2}\right)}, \nabla f(x)=\left(2+x_{2}^{2} \sin \left(x_{1} x_{2}\right) \quad x_{1} x_{2} \sin \left(x_{1} x_{2}\right)-\cos \left(x_{1} x_{2}\right.\right.$
(c) $f(x)=\|x\|^{2}=\sum_{j=1}^{n} x_{j}^{2}: \quad f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

Solution: $\nabla f(x)=2 x, \nabla^{2} f(x)=2 I$
(d) $f(x)=e^{\|x\|^{2}}$

Solution: $\nabla f(x)=2 x e^{\|x\|^{2}}, \quad \nabla^{2} f(x)=2 e^{\|x\|^{2}}\left(I+2 x x^{T}\right)$
(e) $f(x)=x_{1} x_{2} x_{3} \cdots x_{n}: \quad f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

Solution: $\nabla f(x)=\left(\begin{array}{c}x_{2} x_{3} \cdots x_{n} \\ x_{1} x_{3} \cdots x_{n} \\ \vdots \\ x_{1} x_{2} \cdots x_{n-1}\end{array}\right), \nabla^{2} f(x)=\left(\begin{array}{ccccc}0 & x_{3} x_{2} \cdots x_{n} & x_{2} x_{4} \cdots x_{n} & \cdots & x_{2} x_{3} \cdots x_{n-1} \\ x_{3} x_{4} \cdots x_{n} & 0 & x_{1} x_{3} \cdots x_{n} & \cdots & x_{1} x_{3} \cdots x_{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{2} \cdots x_{n-1} & x_{1} x_{3} \cdots x_{n-1} & \cdots & \cdots & 0\end{array}\right)$
(f) $f(x)=-\log \left(x_{1} x_{2} x_{3} \cdots x_{n}\right)$ for $x_{j}>0, j=1, \ldots n$, and undefined otherwise: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Compute $\nabla f(x)$ for $x_{j}>0, j=1, \ldots n$.
Solution: $\nabla f(x)=\left(-1 / x_{1},-1 / x_{2}, \cdots,-1 / x_{n}\right)^{T}, \nabla^{2} f(x)=\operatorname{diag}\left(1 / x_{1}^{2}, 1 / x_{2}^{2}, \cdots, 1 / x_{n}^{2}\right)$
(4) Let $b \in \mathbb{R}^{m}$ and consider the matrix $A \in \mathbb{R}^{m \times n}$ given by

$$
A:=\left[\begin{array}{cccccc}
a_{11} & a_{12} & a_{13} & \ldots & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & \ldots & a_{2 n} \\
\vdots & & & \ddots & & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & \ldots & a_{m n}
\end{array}\right]
$$

and define the column vectors

$$
a_{i}:=\left(\begin{array}{c}
a_{i 1} \\
a_{i 2} \\
a_{i 3} \\
\vdots \\
a_{i n}
\end{array}\right) \quad i=1,2, \ldots, m \text { and } a_{\cdot j}:=\left(\begin{array}{c}
a_{1 j} \\
a_{2 j} \\
a_{3 j} \\
\vdots \\
a_{m j}
\end{array}\right) j=1,2, \ldots, n .
$$

(a) Define $F_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $F_{i}(x):=a_{i}^{T} x, i=1,2, \ldots, m$. What are $\nabla F_{i}(x)$ and $\nabla^{2} F_{i}(x)$?

Solution: $\nabla F_{i}(x)=a_{i}, \quad \nabla^{2} F_{i}(x)=0$
(b) Define $h_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $h_{i}(x):=\left(a_{i}^{T} \cdot x-b_{i}\right)^{2} / 2, i=1,2, \ldots, m$. What are $\nabla h_{i}(x)$ and $\nabla^{2} h_{i}(x)$?

Solution: $\nabla h_{i}(x)=\left(a_{i}^{T} x-b_{i}\right) a_{i}=a_{i} \cdot a_{i}^{T} \cdot x-a_{i} \cdot b_{i}, \nabla^{2} h_{i}(x)=a_{i} \cdot a_{i}^{T}$.
(c) Define $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by $F(x):=\left[F_{1}(x), \ldots, F_{m}(x)\right]^{T}$. What is the Jacobian matrix for F ?

Solution: $\nabla F(x)=A$
(d) Define $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $h(x)=\sum_{i=1}^{m} h_{i}(x)$. Show that $h(x)=\frac{1}{2}\|F(x)\|_{2}^{2}=\frac{1}{2}\|A x-b\|_{2}^{2}$.

Solution: $h(x)=\sum_{i=1}^{m} h_{i}(x)=\frac{1}{2} \sum_{i=1}^{m}\left(a_{i}^{T} \cdot x-b_{i}\right)^{2}=\frac{1}{2}\|A x-b\|^{2}$.
(e) Show that $A^{T} A=\sum_{i=1}^{m} a_{i} \cdot a_{i}^{T}$.

Solution: $A T A=\left[\begin{array}{llll}a_{1} . & a_{2} . & \cdots & a_{m} .\end{array}\right]\left[\begin{array}{c}a_{1}^{T} \\ a_{2}^{T} \\ \vdots \\ a_{m}^{T} .\end{array}\right]=\sum_{i=1}^{m} a_{i} \cdot a_{i}^{T}$.
(f) Given h as defined in (d) above, what are $\nabla h(x)$ and $\nabla^{2} h(x)$?

Solution: $\nabla h(x)=\sum_{i=1}^{m} \nabla h_{i}(x)=\sum_{i=1}^{m} a_{i} \cdot a_{i}^{T} x-a_{i} \cdot b_{i}=\left(\sum_{i=1}^{m} a_{i} \cdot a_{i}^{T}\right) x-A^{T} b=A^{T} A x-A^{T} b=$ $A^{T}(A x-b)$ and $\nabla^{2} h(x)=A^{T} A$.

