
Markowitz Mean-Variance Portfolio Theory

1. Portfolio Return Rates

An investment instrument that can be bought and sold is often called
an asset. Suppose we purchase an asset for x0 dollars on one date and
then later sell it for x1 dollars. We call the ratio

R =
x1

x0

the return on the asset. The rate of return on the asset is given by

r =
x1 − x0

x0

= R− 1.

Therefore,
x1 = Rx0 and x1 = (1 + r)x0 .

Sometimes it is possible to sell and asset that we do not own. This
is called short selling. It works somewhat as follows. Suppose you wish
to short (or short sell) a particular stock XXX. You begin by asking
your stock broker if their firm is holding XXX in the total pool of
stocks owned by all of their customers. If the brokerage does hold (or
manage) some of stock XXX, you can ask them sell any number of
stock XXX up to the number that they hold. This sale is credited
against your account as a debt equal to the number of stock XXX
they sell on your behalf. That is, your debt is not denominated in
dollars, but rather in the number of stock XXX that you are shorting
(i.e. your account is short by the given number of stock XXX). On
your account asset sheet, this short sale appears as a negative number
associated with the shorted asset. Remember, this negative number
is not denominated in dollars, but rather in the number of stocks ,
or assets, shorted. Due to the sale of stock XXX you have received
x0 dollars. Eventually, you must ask the brokerage to buy the same
number of stock XXX back as you originally asked them to sell and
return this stock to the pool of assets that they are holding for their
customers. On the date at which you return stock XXX you ask your
broker to re-purchase it at its current going value of x1 dollars and
return it to the brokerage’s asset pool. If x1 < x0, then you have made
a profit on this transaction; otherwise, you have a loss. The return and
rate of return on this transaction are given by

R =
−x1

−x0

=
x1

x0

and r =
(−x1)− (−x0)

−x0

=
x1 − x0

x0

,

respectively. Short selling can be very risky, and many brokerage firms
do not allow it. Nonetheless, it can be profitable.
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Let us now consider constructing a portfolio consisting of n assets.
We have an initial budget of x0 dollars that we wish to assign to
these assets. The amount that we assign to asset i is x0i = wix0

for i = 1, 2, . . . , n, where wi is a weighting factor for asset i. We al-
low the weights to take negative values, and when negative it means
that the asset is being shorted in our portfolio. To preserve the budget
constraint we require that the weights sum to 1:

∑n
i=1 wi = 1. That is,

the sum of the investments =
n∑

i=1

wix0 = x0

n∑
i=1

wi = x0 .

Notice that by shorting some stocks we open up more funds for the
purchase of other stocks, because when we short a stock we receive the
dollar value of that stock today and we can turn around and re-invest
those dollars elsewhere with the purchase of other assets.

If Ri denotes the return on asset i, then the total receipts from our
portfolio is

x1 =
n∑

i=1

Riwix0 = x0

n∑
i=1

Riwi,

and so the total return from the portfolio is

R =
n∑

i=1

Riwi.

In addition, we have that the rate of return from asset i is ri = Ri− 1,
i = 1, 2, . . . , n. Hence the rate of return on the portfolio is

r = R− 1 = (
n∑

i=1

Riwi)− (
n∑

i=1

wi) =
n∑

i=1

(Ri − 1)wi =
n∑

i=1

riwi .

2. The Basics of Markowitz Mean-Variance Portfolio
Theory

In the Markowitz mean-variance portfolio theory, one models the rate
of returns on assets as random variables. The goal is then to choose the
portfolio weighting factors optimally. In the context of the Markowitz
theory an optimal set of weights is one in which the portfolio achieves
an acceptable baseline expected rate of return with minimal volatility.
Here the variance of the rate of return of an instrument is taken as a
surrogate for its volatility.
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Let ri be the random variable associated with the rate of return for
asset i, for i = 1, 2, . . . , n, and define the random vector

z =


r1

r2
...
rn

 .

Set µi = E(ri), m = (µ1, µ2, . . . , µn)T , and cov(z) = Σ. If w =
(w1, w2, . . . , wn)T is a set of weights associated with a portfolio, then
the rate of return of this portfolio r =

∑n
i=1 riwi is also a random

variable with mean mT w and variance wT Σw. If µb is the acceptable
baseline expected rate of return, then in the Markowitz theory an opti-
mal portfolio is any portfolio solving the following quadratic program:

M minimize 1
2
wT Σw

subject to mT w ≥ µb, and eT w = 1 ,

where e always denotes the vector of ones, i.e., each of the components
of e is the number 1. The KKT conditions for this quadratic program
are

0 = Σw − λm− γe(1)

µb ≤ mT w, eT w = 1, 0 ≤ λ(2)

λT (mT w − µb) = 0(3)

for some λ, γ ∈ IR. Since the covariance matrix is symmetric and
positive definite, we know that if (w, λ, γ) is any triple satisfying the
KKT conditions then w is necessarily a solution to M. Indeed, it is
easily shown that if M is feasible, then a solution to M must always
exist and so a KKT triple can always be found for M.

Proposition 2.1. Let A ∈ IRm×n, B ∈ IRm×t, E ∈ IRs×n, F ∈
IRs×t, M ∈ IRt×n, Q ∈ IRn×n and H ∈ IRt×t with Q and H symmetric,
and let r ∈ IRm, and h ∈ IRs. Further assume that the symmetric
matrix

Q̂ =

[
Q MT

M H

]
is positive semi-definite. If the following quadratic program is feasible,
then it has finite optimal value and a solution attaining this optimal
value exists:

minimize 1
2

[
uT Qu + 2vT Mu + vT Hv

]
subject to Au + Bv ≤ r

Eu + Fv = h
0 ≤ u .
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Proof. Let S be any square root of the matrix Q̂, and set x = (uT , vT )T .
Set Ω = IRm

+ × IRs × IRn
+. Then the constraint region for the QP can

be written as F = {x ∈ IRn × IRt : Tx ∈ Ω}, where

T =

 A B
E F
I 0

 .

By assumption F 6= ∅. Making the change of variable y = Sx in the
QP yields the QP

minimize 1
2
‖y‖2

subject to y ∈ SF = {Sx : x ∈ F} .

Since the set F is a closed nonempty polyhedral convex set, so is the
set SF . Hence the solution ȳ to this QP is given by the point closest
to the origin in the closed set SF which must exist since this set is
closed and nonempty. Therefore, the solution set to the original QP is
nonempty and is given by {x : ȳ = Sx, x ∈ F}. �

Assume that Σ is nonsingular and that w̄ is a solution to M (w̄
exists by Proposition 2.1). We consider two cases.

• µb < mT w̄: In this case, the complementarity condition (3) im-
plies λ = 0. Hence the KKT conditions reduce to the two equa-
tions 0 = Σw̄ − γe and eT w̄ = 1. Multiplying the first through
by Σ−1 yields w̄ = γΣ−1e. Multiplying this equation through
by e and using the fact that eT w̄ = 1 gives γ = (eT Σ−1e)−1.
Therefore,

w̄ = (eT Σ−1e)−1Σ−1e.

It is important to note that this value of w gives the smallest
possible variance over all portfolios since it solves the problem

Mmin-var : minimize 1
2
wT Σw

subject to eT w = 1 .

Consequently, the return associated with the least variance so-
lution is

µmin-var =
mT Σ−1e

eT Σ−1e
.

We denote the set of weights associated with the minimum vari-
ance solution w̄ by wmin-var as well.

Finally observe that is the minimum variance weights wmin-var

are feasible for M, that is, if mT wmin-var ≥ µb, then wmin-var

must be the solution to M since it the solution to the prob-
lem Mmin-var. Therefore, when solving M one first computes
wmin-var and checks to see if the inequality mT wmin-var ≥ µb
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holds. If it does hold, then wmin-var solves M and no further
work is required. If it does not hold then you know that the
constraint mT w = µb at the solution to M.

• µb = mT w̄: Multiplying (1) through by Σ−1 gives

(4) w̄ = λΣ−1m + γΣ−1e .

Using this formula for w̄ and (2), we get the two equations

µb = λmT Σ−1m + γmT Σ−1e

1 = λmT Σ−1e + γeT Σ−1e ,

or equivalently, the 2× 2 matrix equation

(5)

[
mT Σ−1m mT Σ−1e
mT Σ−1e eT Σ−1e

](
λ
γ

)
=

(
µb

1

)
.

Properties of positive definite matrices can be used to show that
the matrix

T =

[
mT Σ−1m mT Σ−1e
mT Σ−1e eT Σ−1e

]
= [m e]T Σ−1[m e]

is always positive semi-definite There are a number of ways
to see this. The simplest is to exploit the factored form T =
[m e]T Σ−1[m e]. But a simple test is to check that

0 < δ = (mT Σ−1m)(eT Σ−1e)− (mT Σ−1e)2.

This will always be the case whenever the vectors m and e are
linearly independent.

If δ = 0, then it must be the case that m = τe for some
τ ∈ IR. In this case, if µb/τ 6= 1, then the problem M is
necessarily infeasible. If µb/τ = 1, then wmin-var solves M which
would have been detected by first computing wmin-var and then
checking its feasibility for M.

If δ > 0, the system (5) can be solved to give

λ = eT v and γ = −mT v,

where
v = δ−1Σ−1(µbe−m) .

Plugging these values into (4) gives the optimal solution

w =
Σ−1e

eT Σ−1e
+ α

[
Σ−1m

eT Σ−1m
− Σ−1e

eT Σ−1e

]
= (1− α)

Σ−1e

eT Σ−1e
+ α

Σ−1m

eT Σ−1m
= (1− α)wmin-var + αwmk ,
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where

wmk =
Σ−1m

eT Σ−1m
and

α =
µb(m

T Σ−1e)(eT Σ−1e)− (mT Σ−1e)2

δ
.

Observe that the optimal set of weights is a linear combina-
tion of the two sets of weights wmin-var and wmk, both of which
satisfy the constraint eT w = 1. We have labeled weights wmk

as the market weights since they incorporate all of the market
information on the assets under consideration.

Let us now recap the solution proceedure for M.

SOLUTION PROCEEDURE

Check Feasibility
First check feasibility. For this we need only check to see if m is parallel
to e. If it is, then m = τe for some τ ∈ IR. In this case the problem
is infeasible if µb > τ . If m = τe and µb ≤ τ , then compute Σ−1 and
evaluate the minimum variance weights wmin-var. These weights solve
M.

Check Minimum Variance Solution
If M is feasible, then compute Σ−1 and the minimum variance solution

wmin-var =
Σ−1e

eT Σ−1e
.

If mT wmin-var ≥ µb, then wmin-var solves the problem M.

Compute Two Portfolio Solution
If the problem is feasible and wmin-var is not the solution, then compute
the market weights

wmk =
Σ−1m

eT Σ−1m
,

and form the vector

v = wmk − wmin-var .

The solution to M is then of the form

w = wmin-var + α(wmk − wmin-var) = wmin-var + αv.

To determine α use the identity mT w = µb to get

α =
µb −mT wmin-var

mT v
.
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It is remarkable that every solution to the Markowitz problemM can
be represented as a linear combination of only two portfolios. These
being the the minimum variance portfolio with weights wmin-var and our
market portfolio with weights wmk. In the next section we will show
that this is a general principal regardless of whether Σ is invertible or
not.

3. The Efficient Frontier and the Two-Fund Theorem

In practice, one would like to have a better understanding of the
return-risk trade-off since we want to both maximize return while min-
imizing risk. An alternative strategy is to try to balance these two
objectives in a single objective function. One way to do this is to solve
the QP

Mλ minimize 1
2
wT Σw − λmT w

subject to eT w = 1 .

Observe that for λ > 0 the term −λmT w tries to push mT w upwards to
counter balance the downward pull of the term 1

2
wT Σw. The upward

push on mT w increases as λ is increased. The KKT conditions for the
QP Mλ are

0 = Σw − λm− γe(6)

eT w = 1 .(7)

Note that these conditions are quite similar to the conditions (1)-(3)
except that we no longer require that mT w = µb. However, if w̄ solves
Mλ and we set µb = mT w̄, then the solution sets of Mλ and M
coincide!

Proceeding as in the case of M under the assumption that Σ is
invertible, we find that the solution to (6)-(7) is given by

γ =
1− λmT Σ−1e

eT Σ−1e

and

wλ =
Σ−1e

eT Σ−1e
+ α

[
Σ−1m

mT Σ−1e
− Σ−1e

eT Σ−1e

]
= (1− α)

Σ−1e

eT Σ−1e
+ α

Σ−1m

mT Σ−1e
= (1− α)wmin-var + αwmk ,

where wmin-var and wmk are as defined in the previous section and

α = λ(mT Σ−1e) .
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This gives a value for µb of

µb = mT wλ = µmin-var + λ
δ

eT Σ−1e
,

where

δ = (eT Σ−1e)(mT Σ−1m)− (mT Σ−1e)2 .

For λ = 0, we get, as expected, µmin-var, while as λ ↑ ∞ we see
that µb ↑ ∞ if 0 < δ = (eT Σ−1e)(mT Σ−1m) − (mT Σ−1e)2. That is, if
0 < δ, the solution to Mλ traces out all possible solutions to M for
all possible values of µb as λ moves from 0 to +∞. Thus, in order to
completely understand the risk-return trade-off, we need only graph
the curve

(
√

(wT
λ Σwλ) , rλ) = (

√
(var(rλ)) , E(rλ)),

where

rλ = wT
λ r ,

as λ varies from 0 to +∞. This is very reminiscent of a mean-standard
deviation curve! Indeed, we will see that it is exactly this concept! In
the context of Markowitz mean-variance portfolio theory, this is called
the efficiency curve or efficient frontier. Any portfolio associated with
a point on the efficient frontier is called and efficient portfolio.

In order to make this connection clear, let us consider the mean-
standard deviation diagram for the entire portfolio. That is, we graph
all pairs (σi, µi) for each asset i = 1, 2, . . . , n where σ2

i = var(ri) and
µi = E(ri). We then define the feasible region to be the set of possible
pairs of the form

(
√

var(wT z), E(wT z))

for all possible values of w ∈ IRn satisfying eT w = 1. The upper
boundary of this region is precisely the efficient frontier! What is per-
haps more remarkable is that the outer boundary is itself a hyperbola
given as the mean-standard deviation diagram of two portfolios.

Theorem 3.1. (The Two-Fund Theorem) The efficient frontier for
Mλ as λ travels from 0 to +∞ is the upper half of the mean-standard
deviation diagram for two efficient portfolios.

Proof. Let µ
(1)
b and µ

(2)
b satisfy µmin-var < µ

(1)
b , µ

(2)
b with µ

(1)
b < µ

(2)
b .

Consider the KKT conditions (1)-(3). Since neither µ
(1)
b and µ

(2)
b equals

µmin-var, the constraint mT w ≥ µ
(i)
b is active for both i = 1 and i = 2.
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Therefore, the KKT conditions become

0 = Σw − λm− γe ,(8)

µb = mT w , and(9)

1 = eT w.(10)

This is just a linear system of equations for which a solution is always
guaranteed to exist for all values of µb > µmin-var. If (wi, λi, γi) are such

solutions for µb = µ
(i)
b , i = 1, 2, then

(wα, λα, γα) = (1− α)(w1, λ1, γ1) + α((w2, λ2, γ2)

solves (8)-(10) for µb = (1−α)µ
(1)
b +αµ

(2)
b for all values of α ∈ IR. Define

the portfolios r(1) = zT w1, r(2) = zT w2, and rα = (1 − α)r(1) + αr(2)

for all α ∈ IR. Then, by construction, as α travels from
µmin-var−µ

(1)
b

µ
(2)
b −µ

(1)
b

to +∞ the pair (
√

var(rα), E(rα)) traces out both the efficient frontier
and the mean-standard deviation curve for the efficient portfolios r(1)

and r(2). �

Thus, according to Markowitz mean-variance theory, only two mu-
tual funds are required to for any investor to achieve their desired
balance between return and risk.

4. The Effect of a Risk-Free Asset

In the previous section, we assumed that all assets in the portfolio
were risky and that the covariance matrix of their returns was nonsin-
gular. However, in practice, there are assets whose risk level is so low
that we model them as risk free. Treasury bills are an example of a
risk free asset.

We now repeat the Markowitz mean-variance analysis with the in-
clusion of an asset f having a risk free return rf . Since the asset is risk
free we also know that its variance is zero and its covariance with any
other asset is zero as well. If we write our random vector of returns as
x̂ = (rf , x

T )T where x = (r1, r2, . . . , rn)T and ri is the rate of return on
risky asset i, then the covariance matrix for x̂ is

Σ̂ =

[
0 0
0 Σ

]
,

where Σ is the covariance matrix for x. Therefore, the Markowitz QP
can be written as

Mf : minimize 1
2
wT Σw

subject to rfw0 + mT w ≥ µb, and w0 + eT w = 1 .
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Here w0 is the weight to be assigned to the risk free asset, µb is the
baseline rate of return as before, and the vectors m and e are to be
interpreted as previously. Since we can always achieve a rate of return
on our investments of rf , we assume that µb ≥ rf . Also we continue
to assume that Σ is nonsingular. Note that if w0 > 0, then we are
investing at the risk free rate, while if w0 < we are borrowing at the
risk free rate.

The KKT conditions for Mf are

0 = λrf + γ(11)

0 = Σw − λm− γe(12)

0 = λ(rfw0 + mT w − µb)(13)

1 = w0 + eT w(14)

µb ≤ rfw0 + mT w(15)

0 ≤ λ .(16)

Again we consider the two cases where the constraint µb ≤ rfw0 +mT w
is either inactive or active. If it is inactive (i.e., µb < rfw0 + mT w),
then by (13) λ = 0 since it is non-negative. But then (11) implies that
γ = 0, which in turn implies that w = 0 by (12). In this case, the
solution is given by w0 = 1, that is, the optimal portfolio consists of
the risk free asset alone.

Next, if the constraint µb ≤ rfw0 + mT w is active at the solution,
then we can proceed as before to derive the optimal solution. First
multiply (12) by Σ−1 and apply (11) to get

(17) w = λΣ−1(m− rfe) .

Using (14) and equality in (15), we get the two equations

1− w0 = eT w = λeT Σ−1(m− rfe) and

µb − rfw0 = mT w = λmT Σ−1(m− rfe) .

This can be rewritten as the 2× 2 system of equations[
1 eT Σ−1(m− rfe)
rf mT Σ−1(m− rfe)

](
w0

λ

)
=

(
1
rf

)
.

Solving this system by Gaussian elimination gives(
w0

λ

)
=

(
1− (µb − rf )

eT Σ−1(m−rf e)

(m−rf e)T Σ−1(m−rf e)
(µb−rf )

(m−rf e)T Σ−1(m−rf e)

)
,
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if m 6= rfe (if m = rfe, the w0 = 1 and w = 0). Plugging this into (17),
we get(

w0

w

)
=

(
1
0

)
+ α

[(
1− eT Σ−1(m− rfe)

Σ−1(m− rfe)

)
−
(

1
0

)]
= (1− α)

(
1
0

)
+ α

(
1− eT Σ−1(m− rfe)

Σ−1(m− rfe)

)
,(18)

where

α =
(µb − rf )

(m− rfe)T Σ−1(m− rfe)
.

That is, the weights for the optimal portfolio is a linear combination
of the two sets of weights

wf =

(
1
0

)
and wM =

(
1− eT Σ−1(m− rfe)

Σ−1(m− rfe)

)
.

This observation yields the following result.

Theorem 4.1. (The One Fund Theorem)
If the selection of assets for investment includes a risk free asset, then
there exists a single fund F of risky assets such that every efficient
portfolio can be constructed as a linear combination of the risk free
asset and the fund F .

5. The Capital Asset Pricing Model (CAPM)

A consequence of the one fund theorem is that if a risk free asset
is one of the assets that we can select from, then the efficient frontier
in the Markovitz mean-variance model is a straight line. Using the
representation for the optimal weights given in (18), we can give a
formula for this line. Begin by defining

rM =

(
rf

r

)T (
1− eT Σ−1(m− rfe)

Σ−1(m− rfe)

)
to be the market portfolio, and let r = w0rf + rT w be any efficient
portfolio so that the weights (w0, w

T )T satisfy (18) for some value of α.
Then µr, the expected return for the portfolio r, satisfies the equation

µr = rf +
µM − rf

σM

σr,

where µr = E(r), σ2
r = var(r),

µM = E(rM) = rf + (m− rfe)
T Σ−1(m− rfe), and

σ2
M = var(rM) = (m− rfe)

T Σ−1(m− rfe) .

This line gives the efficient frontier.



12

Let us now consider the case where the choice of assets in our Markowitz
model consists of the entire market of all trade-able securities. In this
case, the line given above to describe the efficient frontier is called the
capital market line. The slope of the line

µM−rf

σM
is called the price of

risk. We now consider the implications of this line for the pricing of
assets.

Let i be any asset and consider a portfolio consisting of i and the
market portfolio rM alone. The mean-standard deviation curve for this
combination must lie entirely below the capital market line and yet
touches this line at the portfolio rM. Consequently, the capital market
line must be tangent to the mean-standard deviation curve for i and
rM at rM. This observation gives the following important result.

Theorem 5.1. (The Capital Asset Pricing Model (CAPM)) The ex-
pected return on any asset i, µi, satisfies

(19) µi = rf + βi(µM − rf ),

where
βi =

σiM

σ2
M

and σiM is the covariance of the return on asset i and the market port-
folio rM.

Proof. The formula (19) follows from the tangency arguement given
before the statement of the theorem. Let ri be the return on the asset
under consideration, and consider the protfolio

rα = αri + (1− α)rM.

The expected return on this portfolio is

µα = αµi + (1− α)µM,

and the variance is

σ2
α = α2σ2

i + 2α(1− α)σiM + (1− α)2σ2
M .

Differentiating these equations with respect to α gives

drα

dα
= (ri − rM)

and
dσα

dα
=

1

σα

[
ασ2

i + (1− 2α)σiM) + (α− 1)σ2
M

]
.

Therefore,

drα

σα

=
drα/dα

dσα/dα
=

σα(ri − rM)

[ασ2
i + (1− 2α)σiM) + (α− 1)σ2

M]
.
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Since the mean-standard deviation curve for ri and rM is tangent to
the capital market line at α = 0, we get the formula

µM − rf

σM

=
drα

σα

∣∣∣∣
α=0

=
σM(ri − rM)

σiM − σ2
M

.

Solving for µM gives

µM = rM +
(µM − rf )

σM

(σiM − σ2
M)

σM

= rf +
(µM − rf )

σ2
M

σiM

= rf + βi(µM − rf ) .

�

The value βi in Theorem 5.1 is referred to as the beta of the asset
i. The value (µi − rf ) is called the excess rate of return of the asset.
The beta of an asset tells the the excess rate of return of an asset
as a presentage of the market excess rate of return. An asset with a
beta value less than 1 should be a conservative investment in that its
variance should be less than that of the market. On the other hand,
if an asset’s beta exceeds 1, then the asset should be riskier than the
market in the sense that its variance should excedd that of the market.

The CAPM can be used to price an asset. In order to see how this is
done consider an asset that is purchased for the price P and later sold
at the price Q. We model the sale price Q as a random variable with
mean µQ. The rate of return and expected rate of return for this asset
are

r =
Q− P

P
and µr =

µQ − P

P
.

Plugging this into the formula (19) gives the relation

µQ − P

P
= µr = rf + βr(µM − rf ),

or equivalently,

(20) P =
µQ

1 + rf + βr(µM − rf )
,
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where βr is the beta of the asset. Note that βr satisfies

βr =
σrM

σ2
M

=
cov(r, rM)

var(rM)

=
cov(Q−P

P
, rM)

σ2
M

=
cov(Q

P
− 1, rM)

σ2
M

=
cov(Q, rM)

Pσ2
M

.

Therefore,

P =
µQ

1 + rf +
cov(Q,rM)

Pσ2
M

(µM − rf )
,

or equivalently,

1 =
µQ

P (1 + rf ) + cov(Q, rM)(µM − rf )/σ2
M

.

Resolving for P gives

(21) P =
1

1 + rf

[
µQ −

cov(Q, rM)(µM − rf )

σ2
M

]
.

We call the formula (20) the CAPM pricing formula. It gives the
price of an asset as a function of its beta and expected return. The
formula (21) is called the certainty equivalent pricing formula. This
formula does not require knowledge of the asset’s beta but does require
knowledge of the ratio

cov(Q, rM)

σ2
M

.

Note that the certainty equivalent pricing formula demonstrates that
the purchase price P is a linear function of the sale price Q.

The term [
µQ −

cov(Q, rM)(µM − rf )

σ2
M

]
appearing in the certainty equivalent pricing formula is called the cer-
tainty equivalent of the random variable Q. It is a fixed an certain
amount that can be combined with the risk free discount factor (1 +
rf )

−1 to obtain the price of the asset P .
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Exercises

(1) Suppose there are n assets which are uncorrelated (they might
be n different “wild cat” oil well prospects). You may invest in
any one, or in any combination of them. The mean rate of re-
turn µ is the same for each asset, but the variances are different.
The return on asset i has variance σ2

i for i = 1, 2, . . . , n.
(a) Describe the efficient set for this situation.
(b) Write a formula for the minimum-variance point. Express

your result in terms of

σ̂2 =

(
n∑

i=1

1

σ2
i

)
.

(2) An events planner has 1 million dollars to invest in an outdoor
concert. It is expected that the concert will yield 3 million
dollars on the $1 million investment, unless it rains. If it rains,
the entire $1 million investment is lost. There is a 50 percent
chance that it will rain on the day of the concert. However, the
planner can buy rain insurance for 50 cents on the dollar. That
is, for each 50 cents of rain insurance, the planner will receive
$1 if it rains. The planner can purchase as much rain insurance
as desired up to a face value of 3 million dollars.
(a) What is the expected rate of return on this investment if

the planner buys u dollars of insurance?
(b) How much insurance should be purchased to minimize the

variance in the return on this investment? What is the
minimum variance, and what is the associated expected
return?

(3) Consider 3 assets with rates of return r1, r2, and r3, respec-
tively. The covariance matrix and expected rates of return are

Σ =

 2 1 0
1 2 1
0 1 2

 and m =

 .4
.4
.8

 .

(a) Find the minimum variance portfolio.
(b) Find a second efficient portfolio.
(c) If the risk free rate is rf = .2, find an efficient portfolio of

risky assets.
(4) It is often impractical to use all of the assets that are incor-

porated into a specified portfolio (such as the efficient market
portfolio). One alternative is to find a portfolio composed of



16

a given set of n stocks that tracks the specified portfolio most
closely in the sense of minimizing the variance of the difference
in returns.

Specifically, suppose that the target portfolio has a random
rate of return of rM. Further, suppose that there are n assets
with random rates of return r1, r2, . . . , rn. We wish to find the
portfolio having rate of return

r = w1r1 + w2r2 + · · ·+ wnrn

that minimizes the variance of r − rM:

T : minimize 1
2
var(w1r1 + w2r2 + · · ·+ wnrn − rM)

subject to eT w = 1 .

Let x = (r1, r2, . . . , rn)T be the random vector of returns. Set
Σ = cov(x), s = (cov(r1, rM), cov(r2, rM), . . . cov(rn, rM))T and
σ2

M = var(rM). Assume that Σ is an invertable matrix.
(a) Use Σ, s, and σ2

M to write a matrix expression for

var(w1r1 + w2r2 + · · ·+ wnrn − rM).

(b) Write down the KKT conditions for this quadratic pro-
gram.

(c) Use the KKT conditions to compute an expression for the
solution to the QP T .

(d) Although this portfolio tracks the desired portfolio most
closely in terms of variance, it may sacrifice the mean.
Hence a logical approach is to minimize the variance of
the tracking error subject to achieving a given mean re-
turn µb. As the mean µb is varied, this results in a family
of portfolios that are efficient in a new sense–say, tracking
efficient. The QP for this new problem has the form

Tµb
: minimize 1

2
var(w1r1 + w2r2 + · · ·+ wnrn − rM)

subject to eT w = 1 and mT w ≥ µb ,

where m = E(x).
(i) What are the KKT conditions for this new QP?
(ii) Use these KKT conditions to compute an expression

for the solution to the QP Tµb
.

(iii) Is there and analogue of the Two Fund Theorem for
the tracking efficient frontier? If so, give an expres-
sion for two funds that can be used to obtain every
tracking efficient portfolio.
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(5) Assume that the expected rate of return on the market portfolio
is 23% (rM = .23) and the rate of return on T-Bills (risk free
rate) is 7% (rf = .07). The standard deviation of the market is
32% (σM = .32). Assume that the market portfolio is efficient.
(a) What is the equation for the capital market line?
(b) If an expected return of 39% is desired, what is the stan-

dard deviation of this position?
(c) If you have $1000 to invest, how should you invest it to

achieve the above position?
(d) If you invest $300 at the risk free rate and $700 in the

market portfolio, how much money do you expect to have
at the end of the year?

(6) Let wm = wmin-var denote the weights for a set of risky assets
corresponding to the minimum variance point. Let wτ be the
weights for any other portfolio on the efficient frontier for this
set of assets. Define rm and rτ to be the corresponding returns.
(a) There is a formula of the form

σmτ = Aσ2
m,

where σmτ = cov(rm, rτ ) and σ2
m = var(rm). Find A. [Hint:

Consider the portfolios with weights (1−α)wm +αwτ , and
consider small variations of the variance of such portfolios
near α = 0.]

(b) Corresponding to the portfolio wτ there is a portfolio wz

on the minimum variance set (not necessarily the efficient
frontier) that has zero beta with respect to wτ : that is,
σzτ = 0. This portfolio can be expressed as wz = (1 −
α)wm + αwτ . Find the proper value of α.

(c) Show the relationship between these three portfolios on a
diagram that includes the feasible region.

(7) Consider an oil drilling venture. The price of a share in this
venture is $800 with an expected yield after 1 year of $1000 per
share. However, due to the high uncertainty about how much
oil is at the drilling site, the standard deviation of the rate of
return on this investment is σ = .4. Currently the risk free rate
is .1. The expected rate of return on the market portfolio is
.17 with a standard deviation of .12. The beta of the drilling
shares is .6. What is the value of the drilling shares based in
the CAPM? Would you advise purchasing these shares based
on this model?


