There are 2 problems. Stop now and make sure you have both problems. If you do not have them both, then request a new quiz. The first problem is worth 30 points and the second is worth 45 points for a total of 75 points. Show all of your work and follow the directions provided. Partial credit will be given for partial solutions. *CALCULATORS ARE NOT ALLOWED!*

Problem	Score
1	
2	
2	

Total

1. [a](15 points) Under what conditions is the set $S \subset \mathbb{R}^n$ a subspace of \mathbb{R}^n .

Solution S is a subspace of \mathbb{R}^n if

- (i) $0 \in S$
- (ii) $x + y \in S$ for all $x, y \in S$.
- (iii) $\alpha x \in S$ for all $\alpha \in \mathbb{R}$ and $x \in S$.

[b](15 points) Let A be a linear transformation from \mathbb{R}^n to \mathbb{R}^m with m < n. Give the definition for the *null space* of A and provide a simple lower bound for its dimension.

Solution

 $\operatorname{Nul}(A) = \{ x \in I\!\!R^n \mid Ax = 0 \} \quad \text{and} \quad \operatorname{dim}(\operatorname{Nul}(A)) = n - \operatorname{dim}(\operatorname{Ran}(A)) \ge n - m \}$

2. Consider the system

(a)(15 points) Write the augmented matrix corresponding to this system.

Solution

(b)(20 points) Reduce the augmented system in part (a) to echelon form.

	-1	0	4	200	
	-1	1	9	200	
	2	-1	7	200	
	1	0	-4	-200	<i>-r</i> ₁
Solution	0	1	5	0	$r_2 - r_1$
	0	-1	15	600	$r_3 + 2r_1$
	1	0	-4	-200	
	0	1	5	0	
	0	0	20	600	$r_2 + r_3$

(c)(10 points) Describe the set of solutions to the given system.

Solution

$$20x_3 = 600 \rightarrow x_3 = 30$$

 $x_2 + 5x_3 = 0 \rightarrow x_2 = -5x_3 = -150$
 $x_1 - 4x_3 = -200 \rightarrow x_1 = -200 + 4x_3 = -80$

Therefore, the solution set consists of the unique point

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -80 \\ -150 \\ 30 \end{pmatrix} .$$