
MATH 407 Key Theorems

Theorem 0.1 (Weak Duality Theorem). If x ∈ Rn is feasible for P and y ∈ Rm is feasible for D, then

cTx ≤ yTAx ≤ bT y.
Thus, if P is unbounded, then D is necessarily infeasible, and if D is unbounded, then P is necessarily
infeasible. Moreover, if cT x̄ = bT ȳ with x̄ feasible for P and ȳ feasible for D, then x̄ must solve P and ȳ
must solve D.

Proof. Let x ∈ Rn be feasible for P and y ∈ Rm be feasible for D. Then

cTx =
n∑

j=1
cjxj

≤
n∑

j=1
(
m∑
i=1

aijyi)xj [since 0 ≤ xj and cj ≤
m∑
i=1

aijyi, so cjxj ≤ (
m∑
i=1

aijyi)xj ]

= yTAx

=
m∑
i=1

(
n∑

j=1
aijxj)yi

≤
m∑
i=1

biyi [since 0 ≤ yi and
n∑

j=1
aijxj ≤ bi, so (

n∑
j=1

aijxj)yi ≤ biyi]

= bT y

To see that cT x̄ = bT ȳ plus P–D feasibility implies optimality, simply observe that for every other P–D
feasible pair (x, y) we have

cTx ≤ bT ȳ = cT x̄ ≤ bT y .
�

Theorem 0.2. [The Fundamental Theorem of Linear Programming] Every LP has the following
three properties:

(i) If it has no optimal solution, then it is either infeasible or unbounded.
(ii) If it has a feasible solution, then it has a basic feasible solution.

(iii) If it is bounded, then it has an optimal basic feasible solution.

Proof. Part (i): Suppose an LP has no solution. This LP is either feasible or infeasible. Let us suppose
it is feasible. In this case, the first phase of the two-phase simplex algorithm produces a basic feasible
solution. Hence, the second phase of the two-phase simplex algorithm either discovers that the problem is
unbounded or produces an optimal basic feasible solution. By assumption, the LP has no solution so it
must be unbounded. Therefore, the LP is either infeasible or unbounded.

Part (ii): If an LP has a feasible solution, then the first phase of the two-phase simplex algorithm produces
a basic feasible solution.

Part (iii): Suppose an LP is bounded. In particular, this implies that the LP is feasible, and, so by Part
(ii), it has a basic feasible solution. The second phase of the two-phase simplex algorithm either discovers
that the problem is unbounded or produces an optimal basic feasible solution. Since the LP is bounded,
the second phase produces an optimal basic feasible solution. �
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Theorem 0.3 (The Strong Duality Theorem). If either P or D has a finite optimal value, then so does
the other, the optimal values coincide, and optimal solutions to both P and D exist.

Proof. Since the dual of the dual is the primal, we may as well assume that the primal has a finite optimal
value. In this case, the Fundamental Theorem of Linear Programming says that an optimal basic feasible
solution exists. By our formula for the general form of simplex tableaus, we know that there exists a
nonsingular record matrix R ∈ Rn×n and a vector y ∈ Rm such that the optimal tableau has the form[

R 0
−yT 1

] [
A I b
cT 0 0

]
=

[
RA R Rb

cT − yTA −yT −yT b

]
.

Since this is an optimal tableau, we know that

c−AT y ≤ 0, −yT ≤ 0

with yT b equal to optimal value in the primal problem. But then AT y ≥ c and 0 ≤ y so that y is feasible
for the dual problem D. In addition, the Weak Duality Theorem implies that

bT y = maximize cTx ≤ bT ŷ
subject to Ax ≤ b, 0 ≤ x

for every vector ŷ that is feasible for D. Therefore, y solves D. Therefore, optimal solutions to both P and
D exist with the optimal values coinciding. �

Theorem 0.4 (Fundamental Theorem on Sensitivity Analysis). If P is primal nondegenerate, i.e. the
optimal value is finite and no basic variable in any optimal tableau takes the value zero, then the dual
solution y∗ is unique and there is an ε > 0 such that

V (u) = bT y∗ + uT y∗ whenever |ui| ≤ ε, i = 1, . . . ,m .

Thus, in particular, the optimal value function V is differentiable at u = 0 with ∇V (0) = y∗.

Proof. Let [
RA R Rb

(c−AT y∗)T −(y∗)T −bT y∗
]

be any optimal tableau for P. Primal nondegeneracy implies that every component of the vector Rb is
strictly positive. If there is another dual optimal solution ỹ associated with another tableau, then we can
pivot to it using simplex pivots. All of these simplex pivots must be degenerate since the optimal value
cannot change. But degenerate pivots can only be performed if the tableau is degenerate, i.e. there is an
index i such that (Rb)i = 0. But then the basic variable associated with (Rb)i must take the value zero
contradicting the hypothesis that Rb is a strictly positive vector. Hence the only possible optimal tableau
is the one given. The only other way to have multiple dual solutions is if there is an unbounded ray of
optimal solutions emanating from the optimal solution identified by the unique optimal tableau. For this
to occur, there must be a row in the optimal tableau such that any positive multiple of that row can be
added to the objective row without changing the optimal value. Again, this can only occur if some (Rb)i
is zero leading to the same contradiction. Therefore, primal nondegeneracy implies the uniqueness of the
dual solution y∗.

Next let 0 < δ < min{(Rb)i | i = 1, . . . ,m} . Due to the continuity of the mapping u→ Ru, there is an
ε > 0 such that |(Ru)i| ≤ δ i = 1, . . .m whenever |uj | ≤ ε j = 1, . . . , n. Hence, if we perturb b by u, then

R(b+ u) = Rb+Ru ≥ Rb− εe > 0

whenever |uj | ≤ ε j = 1, . . . , n, where e is the vector of all ones. Therefore, if we perturb b by u in the
optimal tableau with |uj | ≤ ε j = 1, . . . , n , we get the tableau[

RA R Rb+Ru
(c−AT y∗)T −(y∗)T −bT y∗ − uT y∗

]
which is still both primal and dual feasible, hence optimal with optimal value V (u) = bT y∗+uT y∗ proving
the theorem. �
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Theorem 0.5. [Fundamental Theorem of the Alternative] Given A ∈ Rm×n, we have

Ran(A) = Nul(AT )⊥, Nul(A) = Ran(AT )⊥

Ran(AT ) = Nul(A)⊥, and Nul(AT ) = Ran(A)⊥.

Proof. Observe that

Nul(A) := {x |Ax = 0}
= {x |Ai· • x = 0, i = 1, 2, . . . ,m}
= {A1·, A2·, . . . , Am·}⊥

= Span [A1·, A2·, . . . , Am·]
⊥

= Ran(AT )⊥ .

Hence, Nul(A) = Ran(AT )⊥, and since for any subspace S ⊂ Rn, we have (S⊥)⊥ = S, we also have
Nul(A)⊥ = Ran(AT ). By replacing A by AT , we obtain the remaining equivalences in the statement of the
theorem. �

Theorem 0.6. [Existence and Uniqueness for the Linear Least Squares Problem]
Let A ∈ Rm×n and b ∈ Rm and consider the linear least squares problem

LLS min
x∈Rn

1

2
‖Ax− b‖22 .

1. The vector x̄ solves LLS if and only if ATAx = AT b.
2. A solution to the normal equations ATAx = AT b always exists.
3. A solution to the linear least squares problem LLS always exists.
4. The linear least squares problem LLS has a unique solution if and only if Nul(A) = {0} in which

case (ATA)−1 exists and the unique solution is given by x̄ = (ATA)−1AT b.

Proof. 1. Suppose that x̄ is a solution to LLS, i.e.,

(1) ‖Ax̄− b‖2 ≤ ‖Ax− b‖2 ∀ x ∈ Rn.

Let x be any other vector in Rn. Then

(2)

‖Ax̄− b‖22 = ‖A(x̄− x) + (Ax− b)‖22
= ‖A(x̄− x)‖22 + 2(A(x̄− x))T (Ax− b) + ‖Ax− b‖22
≥ ‖A(x̄− x)‖22 + 2(A(x̄− x))T (Ax− b) + ‖Ax̄− b‖22 (by (1)).

Therefore, by canceling ‖Ax̄− b‖22 from both sides, we know that, for all x ∈ Rn,

0 ≥ ‖A(x̄− x)‖22 + 2(A(x̄− x))T (Ax− b) = 2(A(x̄− x))T (Ax̄− b)− ‖A(x̄− x)‖22.

By setting x = x̄− tw for t ∈ T and w ∈ Rn, we find that

t2

2
‖Aw‖22 ≥ twTAT (Ax̄− b) ∀ t ∈ Randw ∈ Rn.

Dividing by t > 0, we find that

t

2
‖Aw‖22 ≥ wTAT (Ax̄− b) ∀ t > 0andw ∈ Rn,

and sending t down to zero gives

0 ≥ wTAT (Ax̄− b) ∀ w ∈ Rn,

which implies that AT (Ax̄− b) = 0, or equivalently,

(3) ATAx̄ = AT b.
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Next assume that ATAx̄ = AT b. Then, for all x ∈ Rn,

‖Ax− b‖22 = ‖(Ax−Ax̄) + (Ax̄− b)‖22
= ‖A(x− x̄)‖22 + 2(A(x− x̄))T (Ax̄− b) + ‖Ax̄− b‖22
≥ 2(x− x̄)TAT (Ax̄− b) + ‖Ax̄− b‖22 (since ‖A(x− x̄)‖22 ≥ 0)

= ‖Ax̄− b‖22 (since AT (Ax̄− b) = 0),

or equivalently, x̄ solves LLS.

2. Since Ran(ATA) = Ran(AT ), a solution to ATAx = AT b must exist.

3. By part (1), x̄ solves LLS if and only if ATAx = AT b. Hence the result follows from part (2).

4. The x̄ solves the linear least squares problem if and only if x̄ solves the normal equations. Hence,
the linear least squares problem has a uniques solution if and only if the normal equations have a unique
solution. Since ATA ∈ Rn×n is a square matrix, this is equivalent to saying that ATA is invertible, or
equivalently, Nul(ATA) = {0}. However, Nul(A) = Nul(ATA). Therefore, the linear least squares problem
has a uniques solution if and only if Nul(A) = {0} in which case ATA is invertible and the unique solution
is given by x̄ = (ATA)−1AT b. �


