
3 Does the Simplex Algorithm Work?

In this section we carefully examine the simplex algorithm introduced in the previous chapter.
Our goal is to either prove that it works, or to determine those circumstances under which it
may fail. If the simplex does not always work, and we know why, then we might be able to
devise a way to fix it. Part of understanding whether or not the simplex algorithm works is
to more precisely understand what we mean by working. For example, we have already seen
that some LPs can be infeasible and others unbounded. What does the algorithm do in these
cases? Does it terminate somehow? Does it pivot forever? What does it mean to say that
the simplex algorithm “successfully” terminated on such problems, and more importantly,
will the procedure always “terminate successfully” on problems for which a solution exists?

We begin our study with a detailed analysis of the various components of the algorithm.
Our investigation is broken into 3 parts:

1. Initialization: The simplex algorithm pivots between feasible dictionaries (equivalently,
feasible tableaus). The pivoting process moves us from one BFS to another BFS having
a greater objective value. Hence, in order to pivot, we need a feasible dictionary. How
do we obtain the first feasible dictionary? Clearly, the initial dictionary which defines
the slack and objective variables is not feasible if the LP does not have feasible origin.
The problem of obtaining a first feasible dictionary is necessarily nontrivial since not
every LP is feasible, and detecting infeasiblity can be a di�cult task. We will soon
see that the problems of determining feasibility and of obtaining an initial feasible
dictionary is just as hard as solving an LP with feasible origin.

2. Iteration: Can we always choose variables to enter and leave the basis in an unambigu-
ous way? Can there be multiple choices or no choice? Are there ambiguities in the
choice of these variables, and these ambiguities be satisfactorily resolved?

3. Termination: Does the simplex algorithm terminate after a finite number of pivots?
Does it terminate at a solution when a solution exists? Does it terminate when the
problems is unbounded? Can it stall, or can it go on pivoting forever without ever
solving the problem?

We delay the discussion of (1) until after we know that the method can be made to
succeed on problems with feasible origin. We begin with (2) in order to obtain a beter
understanding of just how the method works. Hopefully, by understanding (2) we’ll have a
better understanding of how to address the questions in (3).

32

3.1 The Simplex Algorithm Iteration: Degeneracy and Cycling

Assume that we are given a feasible tableau or, equivalently, a feasible dictionary:

(D
B

)

x
i

= bb
i

�
X

j2N

ba
ij

x
j

i 2 B

z = bz +
X

j2N

bc
j

x
j

,

where bb
i

� 0, i 2 B (the non-negativity of bb
i

, i 2 B is equivalent to the feasibility of the
dictionary D

B

). Recall that the rule for choosing the variable to enter the basis is to choose
any one of the nonbasic variables x

j0 , j0 2 N for which bc
j0 > 0. There may be many such

nonbasic variables, but all of them has the potential to increase the value of the objective
variable z.

Once we have chosen a variable, say x
j0 , j0 2 N with bc

j0 > 0, to enter the basis, then the
variable that leaves the basis is chosen from among those that place the greatest restriction
on increasing the value of the entering variable x

j0 . These restrictions are imposed by our
desire to maintain feasibility, that is, the non-negativity of the basic variables. As we have
seen, the leaving variable must be chosen from the indices that attain the minimum value
among the ratios

bb
i

ba
ij0

for ba
ij0 > 0 i 2 B

(recall that if ba
ij0  0, then the corresponding equation places no restriction on increases to

the value of x
j0 since increasing the value of x

j0 in this instance does not decrease the value
of x

i

). Hence, if x
i0 is the leaving variable, then

(3.1)
bb
i0

ba
i0j0

= min

(

bb
i

ba
ij0

: i 2 B, ba
ij0 > 0

)

.

There are two potential problems with this selection rule for choosing the leaving variable.

(i) There is no i 2 B for which
ba
ij0 > 0,

and

(ii) There is more than one i0 2 B for which (3.1) holds.

If (i) occurs, then we can increase the value of the entering variable x
j0 as much as we want

without violating feasibility. Since bc
j0 > 0, this implies that we can increase the value of the

objective variable z as much as we want without violating feasibility, that is, the problem is
necessarily unbounded.

33

Fact: If there exists j0 2 N in the dictionary D
B

for which bc
j0 > 0 and ba

ij0  0 for all
i 2 B, then the LP

maximize cTx
subject to Ax  b, 0  x

is unbounded, i.e., the optimal value is +1.

Using this fact we are now able to detect unbounded LPs. We illustrate this with the
following example:

max x1 + x2 + x3

subject to 3x1 + x2 � 2x3  5

4x1 + 3x2  7
0  x1, x2, x3

The initial tableau for this LP is
2

4

3 1 �2 1 0 5
4 3 0 0 1 7
1 1 1 0 0 0

3

5

Note that all three variables x1, x2, and x3 are candidates for entering the basis. However, in
the column above x3, there are no positive coe�cients. Hence, if we choose x3 to enter the
basis, its value can be increased without bound and not violate the non-negativity of any of
the other variables. Therefore, this problem is unbounded, that is, it is feasible and has +1
as its optimal value.

Now consider the second possibility, that is there is more than one variable that can leave
the basis. It turns out that this situation is very bad for the simplex algorithm and requires
careful examination. Consider the next example which illustrates this case.

max 2x1 �x2 +8x3

subject to 2x1 �4x2 +6x3  3

�x1 +3x2 +4x3  2

2x3  1
0  x1, x2, x3

The simplex pivots are

34

x =

0

B

B

@

0

0

0

1

C

C

A

2

�1
0

�4
3

0

6

4

2�

1

0

0

0

1

0

0

0

1

3

2

1

Note that any one of these
rows could serve as the
pivot row!

z = 0 2 �1 8 0 0 0 0

x =

0

B

B

@

0

0
1
2

1

C

C

A

2�
�1
0

�4
3

0

0

0

1

1

0

0

0

1

0

�3
�2
1
2

0

0
1
2

Note that by pivoting on
this tableau we do not
change the objective value

z = �4 2 �1 0 0 0 �4 �4

x =

0

B

B

@

0

0
1
2

1

C

C

A

1

0

0

�2
1�
0

0

0

1

1
2

1
2

0

0

1

0

�3
2

�7
2

1
2

0

0
1
2

Note that we have not
changed the point identified
by this tableau

z = �4 0 3 0 �1 0 �1 �4

x =

0

B

B

@

0

0
1
2

1

C

C

A

1

0

0

0

1

0

0

0

1

3
2

1
2

0

2

1

0

�17
2

�7
2

1
2�

0

0
1
2

Again no change.

z = �4 0 0 0 �5
2 �3 19

2 �4

x =

0

B

B

@

17
2

7
2

0

1

C

C

A

1

0

0

0

1

0

17

7

2

3
2

1
2

0

2

1

0

0

0

1

17
2

7
2

1

Finally, we break out to
optimality.

z = �27
2 0 0 -19 �5

2 �3 0 �27
2

Observations:

1� If on a given pivot, there is more than one choice of variable to leave the basis, then
the subsequent tableau will set one or more of the basic variables equal to zero in
the associated basic feasible solution. A dictionary in which one or more of the basic
variables is set to zero in the associated basic feasible solution is called a “degenerate
dictionary”. Correspondingly, a tableau in which one or more of the basic variables is
set to zero in the associated basic feasible solution is called a “degenerate tableau”.

2� It is possible that a pivot on a degenerate dictionary (or tableau) does not change the
associated basic feasible solution and the value of the objective variable z. Such a pivot
is called a “degenerate pivot”.

Observation 2� is particularly troublesome since it opens the door to the possibility of
an infinite sequence of degenerate pivots never terminating with optimality. Unfortunately,
this can occur leading to the failure of the method. An example of the phenomenon is given

35

in the below. Our goal is to understand how such a pathological situation can occur and
then to devise methods to overcome the problem.

Example: Cycling
When pivoting in tableau format, an easy tie breaking rule for the choice of pivot row (or
the leaving variable) is to choose that row that appears higher up in the tableau. In the
following example, due to H. W. Kuhn, this tie breaking rule leads to cycling.

maximize 2x1 + 3x2 � x3 � 12x4

subject to � 2x1 � 9x2 + x3 + 9x4  0

1

3
x1 + x2 �

1

3
x3 � 2x4  0

x1, x2, x3, x4 � 0

In the following discussion we assume that the simplex algorithm is operating with iron
clad pivoting rules so that any non-optimal feasible dictionary is associated with a unique
pivot. For example, given the feasible dictionary

(D
B

)

x
i

= bb
i

�
X

j2N

ba
ij

x
j

i 2 B

z = bz +
X

j2N

bc
j

x
j

,

the so called largest-coe�cient largest-subscript rule provides such an iron clad pivot rule.

Largest-Coe�cient Largest-Subscript Rule

Choice of Entering Variable:

Among all those variables x
j

with j 2 N such that bc
j

= max{bc
k

: k 2 B} choose x
j0

so that j0 is largest.

Choice of Leaving Variable:

Among all those variables x
i

with i 2 B such that
b
bi

baij0
= min

n

b
bk

bakj0
: k 2 B,ba

kj0 > 0
o

choose x
i0 so that i0 is largest.

Observe that each dictionary is associated with a set of basic indices (the indices of the
basic variables). How many possible ways are there to choose a set of basic indices? Since
every basis must contain m variables and there are only n+m variables altogether, the total
number of possible sets of basic indices equals the number of possible ways to choose m
distinct elements from a collection of n +m objects. This number is given by the binomial
coe�cient

✓

n+m
m

◆

=
(n+m)!

m!n!
.

36

Thus, there are only a finite number of potential bases. Now if it were true that each basis
was associated with a unique dictionary, then, due to our assumption on the pivoting rules,
the only way we could obtain an infinite sequence of dictionaries is if at some point in the
iteration process the same sequence of dictionaries appears over and over again. That is, the
sequence of dictionary begins to cycle.

Recapping, we have observed that since there are only finitely many bases, the only way
for there to be an infinite sequence of pivots is if there is at least one dictionary, say D1,
whose basis appears twice. Let

D1, . . . , DN

, D
N+1, DN+2, . . .

be the sequence of pivots that start at D1 and end at D
N

where D1 and D
N+1 have the

same basis. Now if each basis is associated with a unique dictionary, then D1 = D
N+1.

Returning to our assumption that the pivoting rule uniquely determines the next basis, we
must have D2 = D

N+2, D3 = D
N+3, · · · , DN

= D2N , D1 = D2N+1, · · · . That is, the same
sequence of dictionaries appear over and over again. If this occurs we say that the sequence
of dictionaries cycles. These observations motivate the following result.

Fact: The simplex algorithm fails to terminate if and only if it cycles. The simplex algo-
rithms can only cycle between degenerate dictionaries (or tableaus) with each dictionary (or
tableau) in the cycle being associated with the same basic feasible solution and objective
value.

Proof: Clearly, if the simplex algorithm cycles, then it cannot terminate. Next let us
suppose that the simplex algorithm fails to terminate. We need to show that it must cycle.
By the discussion prior to the statement of this result, we know that if each basis is associated
with a unique dictionary, then the simplex algorithm must cycle. Thus, we establish the
result by showing that each basis yields a unique dictionary. To this end let

(D1)

x
i

= bb
i

�
X

j2N

ba
ij

x
j

, i 2 B

z = bz
i

+
X

j2N

bc
j

x
j

and

(D2)

x
i

= b⇤
i

�
X

j2N

a⇤
ij

x
j

, i 2 B

z = z⇤ +
X

j2N

c⇤
j

x
j

be two dictionaries associated with the same basis B. Recall from the definition of a dic-
tionary that D1 and D2 have identical solution sets. Let j0 2 N and consider the solution
obtained by setting x

j0 = t and x
j

= 0 for j 2 N , j 6= j0. From this solution we see that

bb
i

� ba
ij0t = x

i

= b⇤
i

� a⇤
ij0
t for i 2 B

bz + bc
j0t = z = z⇤ + c⇤

j0
t.

37

Setting t = 0, we have

bb
i

= b⇤
i

i 2 B

and

bz = z⇤.

Then, setting t = 1, we have
ba
ij0 = a⇤

ij0
for i 2 B.

By repeating this argument for all j 2 N , we find that D1 and D2 are identical dictionaries.
Thus, each basis gives rise to a unique dictionary.

We now show that any cycle must be a cycle of degenerate pivots and that each dictionary
in a cycle yields one in the same associated basic feasible solution. If D1, D2, . . . , DN

is the
cycle of dictionaries in question. We have that the value of z in D1 and D

N+1 is the same.
If we let z

k

be the value of z in D
k

, we have

z1  z2  · · ·  z
N

 z
N+1 = z1.

Therefore, z
i

= z
j

for 1  i < j  N . Hence each of the pivots taking D
i

to D
j

is necessarily
degenerate for 1  i < j  N . Therefore, each of the dictionaries D1, . . . , DN

must be
degenerate. Since degenerate pivots do not alter the basic feasible solution, it must be the
case that each D

i

: i = 1, . . . , N identifies one in the same basic feasible solution. ⌅

We have established that the simplex algorithm can only fail to terminate if it cycles,
and that it can only cycle in the presence of degeneracy. In order to assure that the simplex
algorithm successfully terminates we need to develop a pivoting rule that avoids cycling.
Over the years a number of anti-cycling pivoting rules have been proposed. In these notes,
we present one such rule known as the smallest subscript rule, or Bland’s Rule (named
after its discoverer, Robert Bland of Cornell University). Recall that given the basis B ⇢
{1, 2, . . . , n+m}, our notation for the associated dictionary is

(D
B

)
x
i

= bb
i

�
P

j2N baijxj

i 2 B

z = bz +
P

j2N bcjxj

.

The Smallest Subscript Rule

Whenever a degenerate pivot is possible choose the entering and leaving variables as follows:

Choice of entering variable: x
j0 for j0 2 N is the entering variable if bc

j0 > 0 and

j0  j whenever bc
j

> 0.

38

Choice of leaving variable: x
i0 for i0 2 B is the leaving variable if

bb
i0

ba
i0j0

= min

(

bb
i

ba
ij0

: i 2 B,ba
ij0 > 0

)

and

i0  i whenever
bb
i0

ba
i0j0

=
bb
i

ba
ij0

i 2 B.

In short, we always choose the variable with the smallest subscript whenever there is a tie
in the choice of either entering or leaving variable.

Theorem 3.1 (R.G. Bland (1977)) The simplex algorithm terminates as long as the choice
of variable to enter or leave the basis is made according to the smallest subscript rule.

Proof: We need only show that the smallest subscript rule prevents cycling. To this end,
we assume to the contrary that there is a case where cycling occurs even though the smallest
subscript rule has been implemented. Denote this cycle of dictionaries by D0, D1, . . . , DN

=
D0. Since it is a cycle, every dictionary in the cycle is degenerate and identifies the same
BFS. Note that in pivoting from D

k

to D
k+1 some variable must leave the basis and another

must enter. But since the leaving variable is in the basis in D
k

while the entering variable is
not, the leaving variable must entered the basis (at least once) somewhere else in the cycle
while the entering variable must leave the basis (at least once) elsewhere in the cycle. Hence,
in the cycle D0, D1, . . . , DN

, there are variables that leave and return to the basis at least
once during the cycle. We will call these the fickle variables. Note that any variable that
either enters or leaves a basis in the cycle D0, D1, . . . , DN

is necessarily fickle. In addition,
when the fickle variables are nonbasic their value in the associated BSF is zero. Since the
BFS identified remains fixed in a cycle, all fickle variables take the value zero in this BFS
and so remain zero throughout the cycle.

Among the fickle variables there is one x
`

having the largest subscript. Let

D x
i

= b
i

�
X

j /2B

a
ij

x
j

, i 2 B

z = v +
X

j /2B

c
j

x
j

be a dictionary in the cycle where x
`

is leaving the basis with say x
e

entering. Since x
e

is
also fickle, e < `. Let D⇤ be a dictionary in the cycle with x

`

entering the basis. Since each
dictionary in the cycle identifies the same BFS, the value v stays constant throughout the
cycle. Therefore, we can write the objective row of D⇤ as

(3.2) z = v +
m+n

X

j=1

c⇤
j

x
j

,

39

where c⇤
j

= 0 if x
j

is basic in D⇤. Since the solution set of every dictionary in the cycle is
identical, every solution to D must satisfy the objective equation (3.2). In particular, the
solution to D obtained by setting x

e

= t, x
j

= 0 (j /2 B, j 6= e) giving x
i

= b
i

� a
ie

t (i 2 B)
and z = v + c

e

t, must also satisfy (3.2) for every choice of t. That is,

v + c
e

t = v + c⇤
e

t+
X

i2B

c⇤
i

(b
i

� a
ie

t) for all t.

By grouping terms in this expression and re-arranging we obtain

c
e

� c⇤
e

+
X

i2B

c⇤
i

a
ie

!

t =
X

i2B

c⇤
i

b
i

for all t.

Since the right hand side of this expression is constant, it must be zero as is the coe�cient
on the left, i.e.

c
e

� c⇤
e

= �
X

i2B

c⇤
i

a
ie

.

Since x
e

enters the basis in D, c
e

> 0. Since x
`

enters the basis in D⇤ and e < `, the smallest
subscript rule implies that c⇤

e

 0. Therefore, c
e

� c⇤
e

> 0. Consequently,
P

i2B c⇤
i

a
ie

< 0, so
for some s 2 B, c⇤

s

a
se

< 0. Since s 2 B, x
s

is basic in D, and since c⇤
s

6= 0, x
s

is nonbasic in
D⇤, so x

s

is fickle which implies that s  `. We claim that s < `. Indeed, since x
`

is leaving
the basis in D and x

e

is entering, we know that a
`e

> 0, and since x
`

enters the basis in D⇤,
c⇤
`

> 0, so that c⇤
`

a
`e

> 0. Consequently, we cannot have s = `, and so s < `. Now since
s < `, x

s

cannot be a candidate to enter the basis in D⇤, that is, c⇤
s

 0. But c⇤
s

6= 0, so
c⇤
s

< 0. But c⇤
s

a
se

< 0, so a
se

> 0. Now x
s

is fickle and s 2 B, so its value in the BFS is zero,
i.e. b

s

= 0. But since b
s

= 0 and a
se

> 0, x
s

is a candidate for leaving the basis in D. But
x
`

leaves the basis in D with s < `. This violates the smallest subscript rule contradicting
the supposition that it was employed. Hence no such cycle can exist. ⌅

With the introduction of an anti-cycling rule, such as Bland’s Rule, we now know that if
we are given an initial feasible dictionary, then we can apply the simplex algorithm to either
obtain an optimal basic feasible solution or determine that the LP is unbounded.

3.2 Initialization

We now turn to the problem of finding an initial basic feasible solution. Again consider an
LP in standard form,

P maximize cTx
subject tp Ax  b, 0  x.

We associate with this LP an auxiliary LP of the form

Q minimize x0

subject to Ax� x0e  b, 0  x0, x .

40

where e 2 Rm is the vector of all ones. The ith row of the system of inequalities Ax�x0e  b
takes the form

a
i1x1 + a

i2x2 + . . . + a
in

x
n

� x0  b
i

.

The system of inequalities can also be written in block matrix form as

⇥

�e A
⇤

✓

x0

x

◆

 b .

Note that if the optimal value in the auxiliary problem is zero, then at the optimal solution
(x̃0, x̃) we have x̃0 = 0. If we plug this into the inequality Ax � x0e  b, we get Ax̃  b.
That is, x̃ is feasible for the original LP P . Corresponding, if x̂ is feasible for P , then (x̂0, x̂)
with x̂0 = 0 is feasible for A, in which case (x̂0, x̂) must be optimal for A. Therefore, P is
feasible if and only if the optimal value in A is zero. In particular the feasibility of P can
be determined by solving the LP A.

The auxiliary problem A is also called the Phase I problem since solving it is the first
phase of a two phase process of solving general LPs. In Phase I we solve the auxiliary
problem to obtain an initial feasible tableau for the original problem, and in Phase II we
solve the original LP starting with the feasible tableau provided in Phase I.

Solving Q by the simplex algorithm yields an initial feasible dictionary for P . However,
to solve Q we need an initial feasible dictionary for Q. But if P does not have feasible
origin neither does Q! Fortunately, an initial feasible dictionary for Q is easily constructed.
Observe that if we set x0 = �min{b

i

: i = 0, . . . , n} with b0 = 0, then b+ x0e � 0 since

min{b
i

+ x0 : i = 1, . . . ,m}
= min{b

i

: i = 1, . . . ,m}�min{b
i

: i = 0, . . . ,m} � 0.

Hence, by setting x0 = �min{b
i

: i = 0, . . . ,m} and x = 0 we obtain a feasible solution for
Q. It is also a basic feasible solution. To see this, consider the initial dictionary for Q

x
n+i

= b
i

+ x0 �
m

X

j=1

a
ij

x
j

z = �x0.

Let i0 be any index such that

b
i0 = min{b

i

: i = 0, 1, . . . ,m).

If i0 = 0, then this LP has feasible origin and so the initial dictionary is optimal. If i0 > 0,

41

then pivot on this row bringing x0 into the basis. This yields the dictionary

x0 = �b
i0 + x

n+i0 +
m

X

j=1

a
i0jxj

x
n+i

= b
i

� b
i0 + x

n+i0 �
m

X

j=1

(a
ij

� a
i0j)xj

, i 6= i0

z = b
i0 � x

n+i0 �
m

X

j=1

a
i0jxj

.

But b
i0  b

i

for all i = 1, . . . ,m, so

0  b
i

� b
i0 for all i = 1, . . . ,m.

Therefore this dictionary is feasible. We illustrate this initialization procedure by example.
Consider the LP

max x1 � x2 + x3

s.t. 2x1 � x2 + 2x3  4

2x1 � 3x2 + x3  �5
�x1 + x2 � 2x3  �1

0  x1, x2, x3 .

This LP does not have feasible origin since the right hand side vector b = (4,�5,�1)T is
not componentwise non-negative. Hence the initial dictionary D

I

is not feasible. Therefore,
we must first solve the auxiliary problem Q to obtain a feasible dictionary. The auxiliary
problem has the form

max �x0

s.t. �x0 + 2x1 � x2 + 2x3  4

�x0 + 2x1 � 3x2 + x3  �5
�x0 � x1 + x2 � 2x3  �1

0  x0, x1, x2, x3 .

The initial tableau for this LP has the following form:

�1 2 �1 2 1 0 0 4
�1 2 �3 1 0 1 0 �5
�1 �1 1 �2 0 0 1 �1
�1 0 0 0 0 0 0 0

However, instead of pivoting on this tableau we will pivot on a somewhat di↵erent tableau
which di↵ers in one respect. In the Phase I tableau we also include the objective row for

42

the original LP. This is done to save the e↵ort of having to compute the proper coe�cients
for this row after solving the auxiliary problem. Having these coe�cients in hand at the
end of Phase I allows one to immediately begin Phase II. This is illustrated in the following
example. Here we denote the objective variable for the Phase I problem Q as w.

x0

#
�1 2 �1 2 1 0 0 4

�1� 2 �3 1 0 1 0 -5 most negative

�1 �1 1 �2 0 0 1 �1
z 0 1 �1 1 0 0 0 0

w �1 0 0 0 0 0 0 0

0 0 2 1 1 �1 0 9

1 �2 3 �1 0 �1 0 5

0 �3 4� �3 0 �1 1 4

z 0 1 �1 1 0 0 0 0

w 0 �2 3 �1 0 �1 0 5

0 3
2 0 5

2 1 �1
2 �1

2 7

1 1
4 0 5

4� 0 �1
4 �3

4 2

0 �3
4 1 �3

4 0 �1
4

1
4 1

z 0 1
4 0 1

4 0 �1
4

1
4 1

w 0 1
4 0 5

4 0 �1
4 �3

4 2

�2 1 0 0 1 0 1 3 Auxiliary problem
4
5

1
5 0 1 0 �1

5 �3
5

8
5 solved.

3
5 �3

5 1 0 0 �2
5 �1

5
11
5 Extract an initial

z �1
5

4
20 0 0 0 � 4

20
8
20

3
5 feasible tableau.

w �1 0 0 0 0 0 0 0

We have solved the Phase I problem. The optimal value in the Phase I problem is zero.
Hence the original problem is feasible. In addition, we can extract from the tableau above
an initial feasible tableau for the the original LP.

43

1 0 0 1 0 1� 3
1
5 0 1 0 �1

5 �3
5

8
5

�3
5 1 0 0 �2

5 �1
5

11
5

1
5 0 0 0 �1

5
2
5

3
5

1 0 0 1 0 1 3
4
5 0 1 3

5 �1
5 0 17

5

�2
5 1 0 1

5 0 0 14
5

�1
5 0 0 �2

5 �1
5 0 �3

5

Hence the optimal solution is
0

@

x1

x2

x3

1

A =

0

@

0
2.8
3.4

1

A

with optimal value z = .6.
Recapping, we have

The Two Phase Simplex Algorithm

Phase I Formulate and solve the auxiliary problem. Two outcomes are possible:

(i) The optimal value in the auxiliary problem is positive. In this case the original
problem is infeasible.

(ii) The optimal value is zero and an initial feasible tableau for the original problem
is obtained.

Phase II If the original problem is feasible, apply the simplex algorithm to the initial
feasible tableau obtained from Phase I above. Again, two outcomes are possible:

(i) The LP is determined to be unbounded.

(ii) An optimal basic feasible solution is obtained.

Clearly the two phase simplex algorithms can be applied to solve any LP. This yields the
following theorem.

Theorem: [The Fundamental Theorem of Linear Programming] Every LP has
the following three properties:

(i) If it has no optimal solution, then it is either infeasible or unbounded.

(ii) If it has a feasible solution, then it has a basic feasible solution.

(iii) If it is feasible and bounded, then it has an optimal basic feasible solution.

44

Proof: Part (i): Suppose an LP has no solution. This LP is either feasible or infeasible.
Let us suppose it is feasible. In this case, the first phase of the two-phase simplex algorithm
produces a basic feasible solution. Hence, the second phase of the two-phase simplex algo-
rithm either discovers that the problem is unbounded or produces an optimal basic feasible
solution. By assumption, the LP has no solution so it must be unbounded. Therefore, the
LP is either infeasible or unbounded.

Part (ii): If an LP has a feasible solution, then the first phase of the two-phase simplex
algorithm produces a basic feasible solution.

Part (iii): Suppose an LP is bounded. In particular, this implies that the LP is feasible,
and, so by Part (ii), it has a basic feasible solution. The second phase of the two-phase
simplex algorithm either discovers that the problem is unbounded or produces an optimal
basic feasible solution. Since the LP is bounded, the second phase produces an optimal basic
feasible solution. ⌅

45

