
Math 407 — Linear Optimization

1 Introduction

1.1 What is optimization?

A mathematical optimization problem is one in which some function is either maximized or
minimized relative to a given set of alternatives. The function to be minimized or maximized
is called the objective function and the set of alternatives is called the feasible region (or
constraint region). In this course, the feasible region is always taken to be a subset of Rn

(real n-dimensional space) and the objective function is a function from Rn to R.
We further restrict the class of optimization problems that we consider to linear program-

ming problems (or LPs). An LP is an optimization problem over Rn wherein the objective
function is a linear function, that is, the objective has the form

c1x1 + c2x2 + · · ·+ c
n

x
n

for some c
i

2 R i = 1, . . . , n, and the feasible region is the set of solutions to a finite number
of linear inequality and equality constraints, of the form

a
i1xi

+ a
i2x2 + · · ·+ a

in

x
n

 b
i

i = 1, . . . , s

and
a
i1xi

+ a
i2x2 + · · ·+ a

in

x
n

= b
i

i = s+ 1, . . . ,m.

Linear programming is an extremely powerful tool for addressing a wide range of applied
optimization problems. A short list of application areas is resource allocation, produc-
tion scheduling, warehousing, layout, transportation scheduling, facility location, flight crew
scheduling, portfolio optimization, parameter estimation, . . . .

1.2 An Example

To illustrate some of the basic features of LP, we begin with a simple two-dimensional
example. In modeling this example, we will review the four basic steps in the development
of an LP model:

1. Identify and label the decision variables.

2. Determine the objective and use the decision variables to write an expression for the
objective function as a linear function of the decision variables.

3. Determine the explicit constraints and write a functional expression for each of them
as either a linear equation or a linear inequality in the decision variables.
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4. Determine the implicit constraints, and write each as either a linear equation or a linear
inequality in the decision variables.

PLASTIC CUP FACTORY

A local family-owned plastic cup manufacturer wants to optimize their production
mix in order to maximize their profit. They produce personalized beer mugs and
champagne glasses. The profit on a case of beer mugs is $25 while the profit on
a case of champagne glasses is $20. The cups are manufactured with a machine
called a plastic extruder which feeds on plastic resins. Each case of beer mugs
requires 20 lbs. of plastic resins to produce while champagne glasses require 12
lbs. per case. The daily supply of plastic resins is limited to at most 1800 pounds.
About 15 cases of either product can be produced per hour. At the moment the
family wants to limit their work day to 8 hours.

We will model the problem of maximizing the profit for this company as an LP. The first
step in our modeling process is to identify and label the decision variables. These are the
variables that represent the quantifiable decisions that must be made in order to determine
the daily production schedule. That is, we need to specify those quantities whose values
completely determine a production schedule and its associated profit. In order to determine
these quantities, one can ask the question “If I were the plant manager for this factory,
what must I know in order to implement a production schedule?” The best way to identify
the decision variables is to put oneself in the shoes of the decision maker and then ask the
question “What do I need to know in order to make this thing work?” In the case of the
plastic cup factory, everything is determined once it is known how many cases of beer mugs
and champagne glasses are to be produced each day.

Decision Variables:

B = # of cases of beer mugs to be produced daily.

C = # of cases of champagne glasses to be produced daily.

You will soon discover that the most di�cult part of any modeling problem is identifying
the decision variables. Once these variables are correctly identifies then the remainder of the
modeling process usually goes smoothly.

After identifying and labeling the decision variables, one then specifies the problem ob-
jective. That is, write an expression for the objective function as a linear function of the
decision variables.

Objective Function:

Maximize profit where profit = 25B + 20C

The next step in the modeling process is to express the feasible region as the solution set
of a finite collection of linear inequality and equality constraints. We separate this process
into two steps:
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1. determine the explicit constraints, and

2. determine the implicit constraints.

The explicit constraints are those that are explicitly given in the problem statement. In the
problem under consideration, there are explicit constraints on the amount of resin and the
number of work hours that are available on a daily basis.

Explicit Constraints:

resin constraint: 20B + 12C  1800

work hours constraint: 1
15B + 1

15C  8.

This problem also has other constraints called implicit constraints. These are constraints
that are not explicitly given in the problem statement but are present nonetheless. Typically
these constraints are associated with “natural” or “common sense” restrictions on the deci-
sion variable. In the cup factory problem it is clear that one cannot have negative cases of
beer mugs and champagne glasses. That is, both B and C must be non-negative quantities.

Implicit Constraints:
0  B, 0  C.

The entire model for the cup factory problem can now be succinctly stated as

P : max 25B + 20C

subject to 20B + 12C  1800
1
15B + 1

15C  8

0  B,C

Since it is an introductory example, the Plastic Cup Factory problem is particularly
easy to model. As the course progresses you will be asked to model problems of increasing
di�culty and complexity. In this regard, let me emphasize again that the first step in the
modeling process, identification of the decision variables, is always the most di�cult. In
addition, the 4 step modeling process outlined above is not intended to be a process that
one steps through in a linear fashion. As the model unfolds it is often necessary to revisit
earlier steps, for example by adding in more decision variables (a very common requirement).
Moving between these steps several times is often required before the model is complete. In
this process, the greatest stumbling block experienced by students is the overwhelming desire
to try to solve the problem as it is being modeled. Indeed, every student who has taken
this course over has made this error (and on occasion I continue to make this error myself).
Perhaps the most common error in this regard is to try to reduce the total number of decision
variables required. This often complicates the modeling process, blocks the ability to fully
characterize all of the variability present, makes it di�cult to interpret the solution and
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understand its robustness, and makes it di�cult to modify the model as it evolves. Never
be afraid to add more decision variables either to clarify the model or to improve its
flexibility. Modern LP software easily solves problems with tens of thousands of variables,
and in some cases tens of millions of variables. It is more important to get a correct, easily
interpretable, and flexible model then to provide a compact minimalist model.

We now turn to solving the Plastic Cup Factory problem. Since this problem is two
dimensional it is possible to provide a graphical representation and solution. The first step
is to graph the feasible region. To do this, first graph
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the line associated with each of the linear inequality constraints. Then determine on which
side of each of these lines the feasible region must lie (don’t forget the implicit constraints!).
To determine the correct side, locate a point not on the line that determines the constraint
(for example, the origin is often not on the line, and it is particularly easy to use). Plug
this point in and see if it satisfies the constraint. If it does, then it is on the correct side of
the line. If it does not, then the other side of the line is correct. Once the correct side is
determined put little arrows on the line to remind yourself of the correct side. Then shade in
the resulting feasible region which is the set of points feasible for all of the linear inequalities.

The next step is to draw in the vector representing the gradient of the objective function.
This vector may be placed anywhere on your graph, but it is often convenient to draw it
emanating from the origin. Since the objective function has the form

f(x1, x2) = c1x1 + c2x2,

the gradient of f is the same at every point in R2;

rf(x1, x2) =

✓

c1
c2

◆

.

Recall from calculus that the gradient always points in the direction of increasing function
values. Moreover, since the gradient is constant on the whole space, the level sets of f
associated with di↵erent function values are given by the lines perpendicular to the gradient.
Consequently, to obtain the location of the point at which the objective is maximized we
simply set a ruler perpendicular to the gradient and then move the ruler in the direction of
the gradient until we reach the last point (or points) at which the line determined by the
ruler intersects the feasible region. In the case of the cup factory problem this gives the
solution to the LP as

�
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=
�
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We now recap the steps followed in the solution procedure given above:

Step 1: Graph each of the linear constraints indicating on which side of the constraint the
feasible region must lie with an arrow. Don’t forget the implicit constraints!

Step 2: Shade in the feasible region.

Step 3: Draw the gradient vector of the objective function.

Step 4: Place a straight-edge perpendicular to the gradient vector and move the straight-
edge either in the direction of the gradient vector for maximization (or in the oppo-
site direction of the gradient vector for minimization) to the last point for which the
straight-edge intersects the feasible region. The set of points of intersection between
the straight-edge and the feasible region is the set of solutions to the LP.

Step 5: Compute the exact optimal vertex solutions to the LP as the points of intersection
of the lines on the boundary of the feasible region indicated in Step 4. Then compute
the resulting optimal value associated with these points.
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The solution procedure described above for two dimensional problems reveals a great deal
about the geometric structure of LPs that remains true in n dimensions. We will explore this
geometric structure more fully as the course evolves. For the moment, note that the solution
to the Plastic Cup Factory problem lies at a corner point of the feasible region. Indeed, it is
easy to convince oneself that every 2 dimensional LP has an optimal solution that is such a
corner point. The notion of a corner point can be generalized to n dimensional space where
it is referred to as a vertex. These vertices play a big role in understanding the geometry of
linear programming.

Before leaving this section, we make a final comment on the modeling process described
above. We emphasize that there is not one and only one way to model the Cup Factory
problem, or any problem for that matter. In particular, there are many ways to choose the
decision variables for this problem. Clearly, it is su�cient for the shop manager to know how
many hours each day should be devoted to the manufacture of beer mugs and how many
hours to champagne glasses. From this information everything else can be determined. For
example, the number of cases of beer mugs that get produced is 15 times the number of
hours devoted to the production of beer mugs. However, in the end, they should all yield
the same optimal process.

1.3 Sensitivity Analysis

One of the most important things to keep in mind about “real world” LPs is that the input
data associated with the problem specification can change over time, is subject to mea-
surement error, and is often the product of educated guesses (another name for fudging).
For example, in the case of the cup factory the profit levels for both beer mugs and cham-
pagne glasses are subject to seasonal variations. Prior to the New Year, the higher demand
for champagne glasses forces up the sale price and consequently their profitability. As St.
Patrick’s Day approaches the demand for champagne glasses drops, but the demand for
beer mugs soars. In June, demand for champagne glasses again rises due to the increase
in marriage celebrations. Then, just before the Fourth of July, the demand for beer mugs
returns. These seasonal fluctuations may e↵ect the optimal solution and the optimal value.
Similarly, the availability of the resources required to produce the beer mugs and champagne
glasses as well as their purchase prices vary with time, as well as changes and innovations
in the market place. In this context, it is natural, indeed, often essential, to ask how the
optimal value and optimal solutions change as the input data for the problem changes. The
mathematical study of these changes is called sensitivity analysis. This is a very important
area of linear programming. Although we reserve our detailed study of this topic to the end
of the course, it is useful to introduce some of these ideas now to motivate several important
topics in linear programming. The most important of these being duality theory. We begin
with the optimal value function and marginal values.

7



1.3.1 The Optimal Value Function and Marginal Values

Next consider the e↵ect of fluctuations in the availability of resources on both the optimal
solution and the optimal value. In the case of the cup factory there are two basic resources
consumed by the production process: plastic resin and labor hours. In order to analyze
the behavior of the problem as the value of these resources is perturbed, we first observe a
geometric property of the optimal solution, namely that the optimal solution lies at a “corner
point” or “vertex” of the feasible region. More will be made of the notion of a vertex later,
but for the moment su�ce it to say that if an optimal solution to an LP exists then there
is at least one optimal solution that is a vertex of the feasible region. Next note that as the
availability of a resource is changed the constraint line associated with that resource moves
in a parallel fashion along a line normal to the constraint. Thus, at least for a small range
of perturbations to the resources, the vertex associated with the current optimal solution
moves but remains optimal. (We caution that this is only a generic property of an optimal
vertex and there are examples for which it fails; for example, in some models the feasible
region can be made empty under arbitrarily small perturbations of the resources.) These
observations lead us to conjecture that the solution to the LPs

v(✏1, ✏2) = max 25B + 20C

subject to 20B + 12C  1800 + ✏1
1
15B + 1

15C  8 + ✏2

0  B,C

lies at the intersection of the two lines 20B + 12C = 1800 + ✏1 and 1
15B + 1

15C = 8 + ✏2 for
small values of ✏1 and ✏2; namely

B = 45� 45
2 ✏2 +

1
8✏1

C = 75 + 75
2 ✏2 �

1
8✏1, and

v(✏1, ✏2) = 2625 + 375
2 ✏2 +

5
8✏1.

It can be verified by direct computation that this indeed yields the optimal solution for small
values of ✏1 and ✏2.

Next observe that the value v(✏1, ✏2) can now be viewed as a function of ✏1 and ✏2 and
that this function is di↵erentiable at

�

✏1

✏2

�

=
�

0
0

�

with

rv(✏1, ✏2) =



5/8
375/2

�

.

The number 5
8 is called the marginal value of the resin resource at the optimal solution

�

B

C

�

=
�

45
75

�

, and the number 375
2 is called the marginal value of the labor time resource at the

optimal solution
�

B

C

�

=
�

45
75

�

. We have the following interpretation for these marginal values:
each additional pound of resin beyond the base amount of 1800 lbs. contributes $5

8 to the
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profit and each additional hour of labor beyond the base amount of 8 hours contributes $375
2

to the profit.
Using this information one can answer certain questions concerning how one might change

current operating limitations. For example, if we can buy additional resin from another
supplier, how much more per pound are we willing to pay than we are currently paying?
(Answer: $5

8 per pound is the most we are willing to pay beyond what we now pay, why?)
Or, if we are willing to add overtime hours, what is the greatest overtime salary we are willing
to pay? Of course, the marginal values are only good for a certain range of fluctuation in
the resources, but within that range they provide valuable information.

1.4 Duality Theory

We now briefly discuss the economic theory behind the marginal values and how the “hidden
hand of the market place” gives rise to them. This leads in a natural way to a mathematical
theory of duality for linear programming.

Think of the cup factory production process as a black box through which the resources
flow. Raw resources go in one end and exit the other. When they come out the resources
have a di↵erent form, but whatever comes out is still comprised of the entering resources.
However, something has happened to the value of the resources by passing through the black
box. The resources have been purchased for one price as they enter the box and are sold
in their new form when they leave. The di↵erence between the entering and exiting prices
is called the profit. Assuming that there is a positive profit the resources have increased in
value as they pass through the production process.

Let us now consider how the market introduces pressures on the profitability and the
value of the resources available to the market place. We take the perspective of the cup
factory vs the market place. The market place does not want the cup factory to go out of
business. On the other hand, it does not want the cup factory to see a profit. It wants to
keep all the profit for itself and only let the cup factory just break even. It does this by
setting the price of the resources available in the market place. That is, the market sets
the price for plastic resin and labor and it tries to do so in such a way that the cup factory
sees no profit and just breaks even. Since the cup factory is now seeing a profit, the market
must figure out by how much the sale price of resin and labor must be raised to reduce this
profit to zero. This is done by minimizing the value of the available resources over all price
increments that guarantee that the cup factory either loses money or sees no profit from
both of its products. If we denote the per unit price increment for resin by R and that for
labor by L, then the profit for beer mugs is eliminated as long as

20R +
1

15
L � 25

since the left hand side represents the increased value of the resources consumed in the
production of one case of beer mugs and the right hand side is the current profit on a case
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of beer mugs. Similarly, for champagne glasses, the market wants to choose R and L so that

12R +
1

15
L � 20.

Now in order to maintain equilibrium in the market place, that is, not drive the cup factory
out of business (since then the market realizes no profit at all), the market chooses R and L
so as to minimize the increased value of the available resources. That is, the market chooses
R and L to solve the problem

D : minimize 1800R + 8L

subject to 20R + 1
15L � 25

12R + 1
15L � 20

0  R,L

This is just another LP. It is called the “dual” to the LP P in which the cup factory tries to
maximize profit. Observe that if

�

B

C

�

is feasible for P and
�

R

L

�

is feasible for D, then

25B + 20C  [20R + 1
15L]B + [12R + 1

15L]C

= R[20B + 12C] + L[ 1
15B + 1

15C]

 1800R + 8L.

Thus, the value of the objective in P at a feasible point in P is bounded above by the
objective in D at any feasible point for D. In particular, the optimal value in P is bounded
above by the optimal value in D. The “strong duality theorem” states that if either of these
problems has a finite optimal value, then so does the other and these values coincide. In
addition, we claim that the solution to D is given by the marginal values for P . That is,
�

R

L

�

=



5/8
375/2

�

is the optimal solution for D. In order to show this we need only show that

�

R

L

�

=



5/8
375/2

�

is feasible for D and that the value of the objective in D at
�

R

L

�

=



5/8
375/2

�

coincides with the value of the objective in P at
�

B

C

�

=
�

45
75

�

. First we check feasibility:

0  5

8
, 0  375

2

20 · 5
8
+

1

15
· 375

2
� 25

12 · 5
8
+

1

15
· 375

2
� 20.

Next we check optimality

25 · 45 + 20 · 75 = 2625 = 1800 · 5
8
+ 8 · 375

2
.

This is a most remarkable relationship! We have shown that the marginal values have three
distinct and seemingly disparate interpretations:
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1. The marginal values are the partial derivatives of the value function for the LP with
respect to resource availability,

2. The marginal values give the per unit increase in value of each of the resources that
occurs as a result of the production process, and

3. The marginal values are the solutions to a dual LP, D.

1.5 LPs in Standard Form and Their Duals

Recall that a linear program is a problem of maximization or minimization of a linear func-
tion subject to a finite number of linear inequality and equality constraints. This general
definition leads to an enormous variety of possible formulations. In this section we propose
one fixed formulation for the purposes of developing an algorithmic solution procedure and
developing the theory of linear programming. We will show that every LP can be recast in
this one fixed form. We say that an LP is in standard form if it has the form

P : maximize c1x1 + c2x2 + · · ·+ c
n

x
n

subject to a
i1x1 + a

i2x2 + · · ·+ a
in

x
n

 b
i

for i = 1, 2, . . . ,m
0  x

j

for j = 1, 2, . . . , n .

Using matrix notation, we can rewrite this LP as

P : maximize cTx
subject to Ax  b

0  x ,

where c 2 Rn, b 2 Rm, A 2 Rm⇥n and the inequalities Ax  b and 0  x are to be
interpreted componentwise.

Following the results of the previous section on LP duality, we claim that the dual LP to
P is the LP

D : minimize b1y1 + b2y2 + · · ·+ b
m

y
m

subject to a1jy1 + a2jy2 + · · ·+ a
mj

y
m

� c
j

for j = 1, 2, . . . , n
0  y

i

for i = 1, 2, . . . ,m ,

or, equivalently, using matrix notation we have

D : minimize bTy
subject to ATy � c

0  y .

Just as for the cup factory problem, the LPs P and D are related via the Weak Duality
Theorem for linear programming.

11



Theorem 1.1 (Weak Duality Theorem) If x 2 Rn is feasible for P and y 2 Rm is
feasible for D, then

cTx  yTAx  bTy.

Thus, if P is unbounded, then D is necessarily infeasible, and if D is unbounded, then P is
necessarily infeasible. Moreover, if cT x̄ = bT ȳ with x̄ feasible for P and ȳ feasible for D,
then x̄ must solve P and ȳ must solve D.

Proof: Let x 2 Rn be feasible for P and y 2 Rm be feasible for D. Then

cTx =
n

P

j=1
c
j

x
j


n

P

j=1
(
m

P

i=1
a
ij

y
i

)x
j

[since 0  x
j

and c
j


m

P

i=1
a
ij

y
i

, so c
j

x
j

 (
m

P

i=1
a
ij

y
i

)x
j

]

= yTAx

=
m

P

i=1
(

n

P

j=1
a
ij

x
j

)y
i


m

P

i=1
b
i

y
i

[since 0  y
i

and
n

P

j=1
a
ij

x
j

 b
i

, so (
n

P

j=1
a
ij

x
j

)y
i

 b
i

y
i

]

= bTy

To see that cT x̄ = bT ȳ plus P–D feasibility implies optimality, simply observe that for
every other P–D feasible pair (x, y) we have

cTx  bT ȳ = cT x̄  bTy .

⌅

We caution that the infeasibility of either P or D does not imply the unboundedness of
the other. Indeed, it is possible for both P and D to be infeasible as is illustrated by the
following example.

Example:

maximize 2x1 � x2

x1 � x2  1
�x1 + x2  �2

0  x1, x2

1.5.1 Transformation to Standard Form

Every LP can be transformed to an LP in standard form. This process usually requires a
transformation of variables and occasionally the addition of new variables. In this section
we provide a step-by-step procedure for transforming any LP to one in standard form.
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minimization ! maximization

To transform a minimization problem to a maximization problem just multiply the
objective function by �1.

linear inequalities

If an LP has an equality constraint of the form

a
i1x1 + a

i2x2 + · · ·+ a
in

x
n

� b
i

,

it can be transformed to one in standard form by multiplying the inequality through
by �1 to get

�a
i1x1 � a

i2x2 � · · ·� a
in

x
n

 �b
i

.

linear equation

The linear equation
a
i1xi

+ · · ·+ a
in

x
n

= b
i

can be written as two linear inequalities

a
i1x1 + · · ·+ a

in

x
n

 b
i

and
a
i1x1 + · · ·+ a

in

x
n

� b
i

.

The second of these inequalities can be transformed to standard form by multiplying
through by �1.

variables with lower bounds

If a variable x
i

has lower bound l
i

which is not zero (l
i

 x
i

), one obtains a non-negative
variable w

i

with the substitution

x
i

= w
i

+ l
i

.

In this case, the bound l
i

 x
i

is equivalent to the bound 0  w
i

.

variables with upper bounds

If a variable x
i

has an upper bound u
i

(x
i

 u
i

) one obtains a non-negative variable
w

i

with the substitution
x
i

= u
i

� w
i

.

In this case, the bound x
i

 u
i

is equivalent to the bound 0  w
i

.

variables with interval bounds
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An interval bound of the form l
i

 x
i

 u
i

can be transformed into one non-negativity
constraint and one linear inequality constraint in standard form by making the substi-
tution

x
i

= w
i

+ l
i

.

In this case, the bounds l
i

 x
i

 u
i

are equivalent to the constraints

0  w
i

and w
i

 u
i

� l
i

.

free variables

Sometimes a variable is given without any bounds. Such variables are called free vari-
ables. To obtain standard form every free variable must be replaced by the di↵erence
of two non-negative variables. That is, if x

i

is free, then we get

x
i

= u
i

� v
i

with 0  u
i

and 0  v
i

.

To illustrate the ideas given above, we put the following LP into standard form.

minimize 3x1 � x2

subject to �x1 + 6x2 � x3 + x4 � �3
7x2 + x4 = 5

x3 + x4  2

�1  x2, x3  5,�2  x4  2.

The hardest part of the translation to standard form, or at least the part most susceptible
to error, is the replacement of existing variables with non-negative variables. For this reason,
I usually make the translation in two steps. In the first step I make all of the changes
that do not involve variable substitution, and then, in the second step, I start again and
do all of the variable substitutions. Following this procedure, let us start with all of the
transformations that do not require variable substitution. First, turn the minimization
problem into a maximization problem by rewriting the objective as

maximize � 3x1 + x2.

Next we replace the first inequality constraint by the constraint

x1 � 6x2 + x3 � x4  3.

The equality constraint is replaced by the two inequality constraints

7x2 + x4  5
�7x2 � x4  �5.
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Finally, the double bound �2  x4  2 indicates that we should group the upper bound
with the linear inequalities. All of these changes give the LP

maximize �3x1 + x2

subject to x1 � 6x2 + x3 � x4  3
7x2 + x4  5

� 7x2 � x4  �5
x3 + x4  2

x4  2

�1  x2, x3  5,�2  x4.

We now move on to variable replacement. Observe that the variable x1 is free, so we
replace it by

x1 = z+1 � z�1 with 0  z+1 , 0  z�1 .

The variable x2 has a non-zero lower bound so we replace it by

z2 = x2 + 1 or x2 = z2 � 1 with 0  z2.

The variable x3 is bounded above, so we replace it by

z3 = 5� x3 or x3 = 5� z3 with 0  z3.

The variable x5 is bounded below, so we replace it by

z4 = x4 + 2 or x4 = z4 � 2 with 0  z4.

After making these substitutions, we get the following LP in standard form:

maximize �3z+1 + 3z�1 + z2
subject to z+1 � z�1 � 6z2 � z3 � z4  �10

7z2 + z4  14
� 7z2 � z4  �14

� z3 + z4  �1
z4  4

0  z+1 , z
�
1 , z2, z3, z4.
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