
Introduction to Game Theory
Matrix Games and Lagrangian Duality

1. Introduction

In this section we study only finite, two person, zero-sum, matrix games. We introduce the basics
by studying a Canadian drinking game. One and two dollar coins are very popular in Canada. The
one dollar coin, introduced in 1987, is adorned with the picture of the common loon an aquatic bird
found throughout Canada. Quickly the one dollar coin was nicknamed the loonie. The two dollar
coin was issued in 1996. At the time there was a national competition for its naming with Nanuq
the winning name. But the popular name for the coin quickly became the portmanteau toonie. The
game is played with loonies and toonies, and, so I suppose, should be called loonie-toonie. Actually,
this is a version of an ancient game called Morra which dates back to at least Roman times and
most probably much earlier. Regardless, the rules are as follows: each player chooses either the
loonie or the toonie and places the single coin in their closed right hand with the choice hidden
from their opponent. Each player then guesses the play of the other. If only one guesses correctly,
then the other player pays to the correct guesser the sum of the coins in both their hands. If both
guess incorrectly or both correctly, then there is no payoff. This is an example of a zero-sum game
since in each case, what one player loses the other player gains. This is not always the case. For
example, in a casino, the house always takes a commission from the winner. That is, the winner
makes less than the loser loses.

We now model the game of Morra mathematically. The first step is to define the payoff matrix.
Designate one of the players as the column player and the other the row player. The payoff matrix
consists of the payoff to the column player based on the strategy employed by both players in a given
round of play. The strategies for either player are the same and they consist of a pair of decisions.
The first is the choice of coin to hide, and the second is the guess for the opponents hidden coin.
We denote these decisions by (i, j) with i = 1, 2 and j = 1, 2. For example, the strategy (2, 1) is to
hide the toonie in your fist and to guess your opponent is hiding a loonie. The payoff matrix P to
the column player is given by

(1, 1) (1, 2) (2, 1) (2, 2)
(1, 1) 0 −2 3 0
(1, 2) 2 0 0 −3
(2, 1) −3 0 0 4
(2, 2) 0 3 −4 0

.

For example, if the row player plays strategy (2, 2) while the column player uses strategy (2, 1),
then the column player must pay the row player $4.

The elements of P are the payoffs for the use of a pure strategy. But this game is played over
and over again. So it is advisable for the column player to use a different pure strategy on each
play. How should these strategies be chosen? One possibility is for the column player to decide on
a long run frequency of play for each strategy, or equivalently, to decide on a probability of play for
each strategy on each play. This is called a mixed strategy which can be represented as a vector of
probabilities in IR4:

(1) 0 ≤ x and eTx = 1,

where e always represents the vector of all ones of the appropriate dimension, in this case e =
(1, 1, 1, 1)T . Given a particular mixed strategy, one can easily compute the expected payoff to the
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column player for each choice of pure strategy by the row player. For example, if the row player
chooses pure strategy (1, 1), then the expected payoff to the column player is

0 · x1 − 2 · x2 + 3 · x3 + 0 · x4 =
4∑
j=1

P1jxj .

Now given that the column player will use a mixed strategy, what mixed strategy should be
chosen? One choice is the strategy that maximizes the column player’s minimum expected payoff
over the range of the row player’s pure strategies. This strategy can be found by solving the
optimization problem

(2) max
0≤x, eT x=1

min
i=1,2,3,4

4∑
j=1

Pijxi .

Note that this problem is equivalent to the linear program

C maximize γ
subject to γe ≤ Px,

eTx = 1
0 ≤ x.

On the flip side, the row player can also chose a mixed strategy of play, 0 ≤ y, eTy = 1. In this
case, the expected payoff to the column player when the column player uses the pure strategy (2, 1)
is

3 · y1 + 0 · y2 + 0 · y3 − 4 · y4 =
4∑
i=1

Pi3yi .

How should the row player decide on their strategy? One approach is for the row player to minimize
the maximum expected payoff to the column player:

(3) min
0≤y, eT y=1

max
j=1,2,3,4

4∑
i=1

Pijyi.

This problem is equivalent to the linear program

R minimize η
subject to P Ty ≤ ηe,

eTy = 1
0 ≤ y.

Both the column player’s problem C and the row player’s problem R are linear programming
problems. Let us pause for a moment to consider their dual linear programs. We begin with the
column player’s problem by putting it into our general standard form so that we can immediately
write down its dual LP. Rewriting we have

C maximize

(
1
0

)T (
γ
x

)

subject to
[
0 eT

]( γ
x

)
= 1 (τ)

[
e −P

]( γ
x

)
≤ 0 (y)

0 ≤ x .
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The dual problem becomes

minimize

(
1
0

)T (
τ
y

)
subject to

[
0 eT

]( τ
y

)
= 1

[
e −P T

]( τ
y

)
≥ 0

0 ≤ y.

Rewriting this dual, we have the LP

minimize τ
subject to P Ty ≤ τe

eTy = 1
0 ≤ y .

But this is just the row player’s problem R! That is, the row player’s and the column players
problems are dual to each other! Also, observe that the feasible regions for both the primal and
dual problems are always nonempty (why?) and bounded in the variables x and y, respectively
(why?), and so the optimal values of both are necessarily bounded (why?). Hence, by the Strong
Duality Theorem solutions to both the primal and dual problems exist with the optimal values
coinciding.

Let us now apply this structure to the loonie-toonie game. One way to compute an optimal
solution is to guess what it is and then use the Weak Duality Theorem to verify. In this game
neither the column player nor the row player has a clear advantage, so it is reasonable to guess that
their optimal strategies should be the same giving the same optimal value of zero. One guess that
corresponds to this intuition is

γ̄ = 0, x̄ =


0

3/5
2/5
0

 and η̄ = 0, ȳ =


0

4/7
3/7
0

 ,

with

P =


0 −2 3 0
2 0 0 −3
−3 0 0 4
0 3 −4 0

 .
Observe that

Px̄ =


0
0
0

1/7

 and P T ȳ =


−1/7

0
0
0

 ,

so (γ̄, x̄) is primal feasible while (η̄, ȳ) is dual feasible and their optimal values coincide at zero.
Therefore, by the Weak Duality Theorem, they are optimal for their respective problems. Note
that although the game seems to be structured in a way that it makes no difference who the column
and row players are, the optimal solutions given above are not the same strategy. Is there an issue
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yet to be resolved? What can be said about the strategies

γ̄ = 0, x̄ =


0

4/7
3/7
0

 and η̄ = 0, ȳ =


0

3/5
2/5
0

?

Can more be said about the structure of the solution sets for both the primal and dual games in
this case?

Any matrix P ∈ IRm×n can define a matrix game of the form C having dual R. These games are
always feasible with bounded feasible region. Therefore, by the Strong Duality Theorem, both C
and R always have optimal solutions with a common optimal value. This common optimal value
is called the value of the game. If the value of the game is zero, then it is said to be a fair game
since neither the column or row player has an advantage. Games such as Morra are said to be
symmetric since their payoff matrix is skew symmetric, i.e., P T = −P . Symmetric games are
always fair (why?). A pair of strategies for the column and row players are said to constitute a
Nash equilibrium if prior knowledge of the mixed strategy of ones opponent has no effect on ones
own choice of strategy. Is the case for the strategies provided by our minimax approach to the game
of Morra?

2. Equilibria and Minimax Problems

We can change the way we represent matrix games by making a simple observation about how
the maximum or minimum of a finite set of objects can be represented. If {= a1, a2, . . . , aN} is any
collection of real numbers, and λ = (λ1, λ2, . . . , λN)T is any N -dimensional probability vector, then

min{a1, a2, . . . , aN} ≤
N∑
i=1

λiai ≤ max{a1, a2, . . . , aN}.

That is, the expected value, or average, of the ai’s in any discrete probability distribution always
lies between the minimum and the maximum values of the ai’s. Consequently,

min{a1, a2, . . . , aN} = min
0≤y,eT y=1

yTa and max{a1, a2, . . . , aN} = max
0≤y,eT y=1

yTa.

By applying this observation to (2) and (3), we obtain the following representations for C and R,
respectively:

(4) max
0≤x,eT x=1

min
0≤y,eT y=1

yTPx ,

and

(5) min
0≤y,eT y=1

max
0≤x,eT x=1

yTPx .

This implies that the difference between the column player’s problem and the row player’s problem
is simply reversing the order in which the min andmax are taken. The fact that the optimal values
in (4) and (5) coincide is an instance of what is known as a Minimax Theorem. Such theorems play
an important role in several areas of application, particularly in economics and game theory. The
first big theorem of this type was proven by John von Neumann of which the following theorem is
an elementary special case.

Theorem 1. Given any matrix P ∈ IRm×n, one has

max
0≤x,eT x=1

min
0≤y,eT y=1

yTPx = min
0≤y,eT y=1

max
0≤x,eT x=1

yTPx .
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3. Lagrangian Duality

A general minimax problem can be obtained from any function L : IRn × IRm 7→ IR and two sets
X ⊂ IRn and Y ⊂ IRm and writing the two problems

max
x∈X

min
y∈Y

L(x, y) and min
y∈Y

max
x∈X

L(x, y).

In the case of matrix games, we have L(x, y) = yTPx. Returning to the general case, define the
function p : IRn 7→ IR ∪ {−∞} and d : IRm 7→ IR ∪ {+∞} by

p(x) := min
y∈Y

L(x, y) and d(y) := max
x∈X

L(x, y) .

We call p the primal objective function and d the dual objective, and we call the problem

P max
x∈X

p(x)

the Primal Problem and

D min
y∈Y

d(y)

the Dual Problem. Note that for every pair (x̄, ȳ) ∈ X × Y ,

(6) p(x̄) = min
y∈Y

L(x̄, y) ≤ L(x̄, ȳ) ≤ max
x∈X

L(x, ȳ) = d(ȳ).

The inequality (6) is called the Weak Duality Theorem for minimax problems of this type.

Theorem 2 (Weak Duality for Minimax). Let L, p, and d, be as defined above. Then for every
(x, y) ∈ X × Y ,

(7) p(x) ≤ d(y).

Moreover, if (x̄, ȳ) are such that p(x̄) = d(ȳ), then x̄ solves P and ȳ solves D.

We call a point (x̄, ȳ) ∈ X × Y a saddle point for L, if

(8) L(x, ȳ) ≤ L(x̄, ȳ) ≤ L(x̄, y) ∀ (x, y) ∈ X × Y.

Theorem 3 (Saddle Point Theorem). Let L, p, and d, be as defined above.

(i) If (x̄, ȳ) is a saddle point for L, the x̄ solves P and ȳ solves D with the optimal value in both
P and D equal to the saddle point value L(x̄, ȳ).

(ii) If x̄ solves P and ȳ solves D with the optimal values coinciding, then (x̄, ȳ) is a saddle point
for L.

Proof. (i) Suppose (x̄, ȳ) is a saddle point for L. Let ε > 0 and choose (xε, yε) ∈ X × Y so that

d(ȳ)− ε ≤ L(xε, ȳ) and L(x̄, yε) ≤ p(x̄) + ε.

By combining this with (8), we obtain

d(ȳ)− ε ≤ L(x̄, ȳ) ≤ p(x̄) + ε.

Since this holds for all ε > 0, we have d(ȳ) ≤ L(x̄, ȳ) ≤ p(x̄). But then, by the Weak Duality
Theorem, p(x̄) ≤ d(ȳ) ≤ L(x̄, ȳ) ≤ p(x̄) ≤ d(ȳ) which, again by the Weak Duality Theorem, proves
the result. �
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3.1. Linear Programming Duality. Let A ∈ IRm×n, b ∈ IRm, and c ∈ IRn, and define

L(x, y) := cTx+ yT b− yTAx,

with X := IRn
+ and Y = IRm

+ . Then

p(x) = min
0≤y

L(x, y) = min
0≤y

cTx+ yT (b− Ax)

= cTx+ min
0≤y

yT (b− Ax)

= cTx+

{
0 , Ax ≤ b,
−∞ , else.

and

d(y) = max
0≤x

L(x, y) = max
0≤x

yT b+ (c− ATy)Tx

= yT b+ max
0≤x

(c− ATy)Tx

= yT b+

{
0 , ATy ≥ c,
+∞ , else.

Therefore, the primal problem has the form

P max
0≤x

p(x) = max cTx

s.t. Ax ≤ b, 0 ≤ x,

while the dual problem takes the form

D min
0≤y

d(y) = min bTy

s.t. ATy ≥ c, 0 ≤ y.

In this case, the function L is called the Lagrangian, and this development is an instance of
Lagrangian duality. Observe that if x̄ solves P and ȳ solves D, then the Saddle Point Theorem tells
us that p(x̄) = L(x̄, ȳ) = d(ȳ), or equivalently,

cT x̄ = cT x̄+ bT ȳ − ȳTAx̄ = bT ȳ,

or equivalently,

ȳT (b− Ax̄) = 0 and x̄T (c− AT ȳ) = 0,

which is just the Complementary Slackness Theorem.

3.2. Convex Quadratic Programming Duality. One can also apply the Lagrangian Duality
Theory in the context of Convex Quadratic Programming. To see how this is done let Q ∈ IRn×n

be symmetric and positive definite, and let c ∈ IRn. Consider the convex quadratic program

D minimize 1
2
xTQx+ cTx

subject to Ax ≤ b, 0 ≤ x .

The Lagrangian is given by

L(x, y, v) =
1

2
xTQx+ cTx+ yT (ATx− b)− vTx where 0 ≤ y, 0 ≤ v.

The dual objective function is

g(y, v) = min
x∈IRn

L(x, y, v) .
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The goal is to obtain a closed form expression for g with the variable x removed by using the
first-order optimality condition 0 = ∇xL(x, y, v). This optimality condition completely identifies
the solution since L is convex in x. We have

0 = ∇xL(x, y, v) = Qx+ c+ ATy − v.
Since Q is invertible, we have

x = Q−1(v − ATy − c).
Plugging this expression for x into L(x, y, v) gives

g(y, v) = L(Q−1(v − ATy − c), y, v)

=
1

2
(v − ATy − c)TQ−1(v − ATy − c)

+cTQ−1(v − ATy − c) + yT (AQ−1(v − ATy − c)− b)− vTQ−1(v − ATy − c)

=
1

2
(v − ATy − c)TQ−1(v − ATy − c)− (v − ATy − c)TQ−1(v − ATy − c)− bTy

= −1

2
(v − ATy − c)TQ−1(v − ATy − c)− bTy .

Hence the dual problem is

maximize −1
2
(v − ATy − c)TQ−1(v − ATy − c)− bTy

subject to 0 ≤ y, 0 ≤ v .

Moreover, (ȳ, v̄) solve the dual problem if an only if x̄ = Q−1(v̄−AT ȳ−c) solves the primal problem
with the primal and dual optimal values coinciding.

All of this is just a glimpse into what is possible!


