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Linear Least Squares

A linear least squares problem is one of the form
S 2
LLS minimize L | Ax — b)|
€2 2>

where
AER™" beR™ and |yl =yi+yi+ - +y2.
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Linear Least Squares

A linear least squares problem is one of the form
o 2
LLS minimize L | Ax — b)|
€2 2>

where
AcR™" beR™ and |y|2:=y2+y3+---+y2.
Theorem:
Consider the linear least squares problem LLS .
1. A solution to the normal equations AT Ax = AT b always exists.
2. A solution to LLS always exists.

3. The linear least squares problem L£LS has a unique solution if and only if
Null(A) = {0} in which case (AT A)~! exists and the unique solution is given
by x = (ATA)"tATb.

4. If Ran(A) = R™, then (AAT)~1 exists and x = AT(AAT)~1b solves LLS ,
indeed, AX = b.
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Distance to a Subspace

Let S C R™ be a subspace and suppose b € R™ is not in S.
Find the point Z € S such that

1Z = bll, < [z — bl|, Vzes,

or equivalently, solve
D minl|z- b3 .
ZGIQ 2 ||Z H2
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Distance to a Subspace

Let S C R™ be a subspace and suppose b € R™ is not in S.
Find the point Z € S such that

1Z = bll, < [z — bl|, Vzes,

or equivalently, solve
D minl|z- b3 .
ZGIQ 2 ||Z H2

Least Squares Connection:

Suppose S = Ran(A).

Then Z € R™ solves D if and only if there is an X € R" with Z = AX such that X
solves LLS .
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Orthogonal Projections and Orthonormal Bases

Let Q@ € R"™ K be a matrix whose columns form an orthonormal basis for the
subspace S, so that k =dim S.
Set P = QQT and note that QT Q = Ix the k x k identity matrix. Then

P’=QQTQR=QIQRQT=QQR"=P and PT=(QQT)"=QQ"=P,

so that P = P; the orthogonal projection onto S !
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Orthogonal Projections and Orthonormal Bases

Let Q@ € R"™ K be a matrix whose columns form an orthonormal basis for the
subspace S, so that k =dim S.
Set P = QQT and note that QT Q = Ix the k x k identity matrix. Then

P’=QQTQR=QIQRQT=QQR"=P and PT=(QQT)"=QQ"=P,

so that P = P; the orthogonal projection onto S !

Lemma:
(1) The projection P € R™" is orthogonal if and only if P = PT.

(2) If the columns of the matrix @ € R™* form an orthonormal basis for the
subspace S C R”, then P := QQ7 is the orthogonal projection onto S.
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Orthogonal Projections and Distance to a Subspace

Theorem: Let S C R™ be a subspace and let b € R™\ S. Then the unique
solution to the least distance problem

D minimize ||z — b||,
zeS

is Z := Psb, where Ps is the orthogonal projector onto S.
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Orthogonal Projections and Distance to a Subspace

Theorem: Let S C R™ be a subspace and let b € R™\ S. Then the unique
solution to the least distance problem

D minimize ||z — b||,
zeS
is Z := Psb, where Ps is the orthogonal projector onto S.
Proposition: Let A € R™*" with m < n and Null(A) = {0}. Then the orthogonal

projector onto Ran(A) is given by

Prwiy = A(ATA) AT,
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Minimal Norm Solutions to Ax = b

Let A € R™*" and suppose that m < n. Then A is short and fat so A most likely

has rank m, or equivalently, Ran(A) = R™ . So for the purposes of this discussion
we assume that rank(A) = m.
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Minimal Norm Solutions to Ax = b

Let A € R™*" and suppose that m < n. Then A is short and fat so A most likely
has rank m, or equivalently, Ran(A) = R™ . So for the purposes of this discussion
we assume that rank(A) = m.

Since m < n, the set of solutions to Ax = b will be infinite since the nullity of A is
n — m. Indeed, if x° is any particular solution to Ax = b, then the set of solutions
is given by

x0+ Null(A) := {XO +z | z € Null(A) }
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Minimal Norm Solutions to Ax = b

Let A € R™*" and suppose that m < n. Then A is short and fat so A most likely
has rank m, or equivalently, Ran(A) = R™ . So for the purposes of this discussion
we assume that rank(A) = m.

Since m < n, the set of solutions to Ax = b will be infinite since the nullity of A is
n — m. Indeed, if x° is any particular solution to Ax = b, then the set of solutions
is given by

x0+ Null(A) := {XO +z | z € Null(A) }

In this setting, one might prefer the solution having least norm:

. l 0 2
Jmin 3 |z +x°f; -
This problem is of the form D min {||z — b||, | z € S } whose solution is Z = Psb
when S is a subspace.
Consequently, the solution is given by Z = —Psx° where P; is now the orthogonal
projection onto S := Null(A).
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A Formula for P,

Observe that Py = Prana)2 = | — PraaT) -
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A Formula for P

Null(A)

Observe that Py = Prana)2 = | — PraaT) -

We have already shown that if M € RP*9 satisfies Null(M) = {0}, then
PRan(M) - M(MTM)ilMT .
If we take M = AT, then our assumption that Ran(A) = R™ gives

Null(M) = Null(AT) = Ran(A)* = (R™)* = {0}.

Hence,
Peoary = AT(AAT) 1A and

Puiiy = Pranarye = | — Pryury = 1 — AT(AAT) 1A
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Solution to D min{||z — b||,|z€ S}

We can take x° := AT(AAT)~1b as our particular solution to Ax = b in D since
Ax® = AAT(AAT)"1b = b.
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Solution to D min{||z — b||,|z€ S}

We can take x° := AT(AAT)~1b as our particular solution to Ax = b in D since
Ax® = AAT(AAT)"1b = b.

Hence, our solution to D is

x=x 4 PNu”(A)(—XO)
=x0 4 (I = AT(AAT)LA)(—x%)
= AT(AAT)1AXC
= AT(AAT)TAAT(AAT) b
=AT(AAT) 1p

= XO.

That is, x> = AT(AAT)"1b is the least norm solution to Ax = b.
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Solution to D min{||z — b||,|z€ S}

Theorem:
Let A € R™*" be such that m < n and Ran(A) = R™.
(1) The matrix AAT is invertible.

(2) The orthogonal projection onto Null(A) is given by
PNuII(A) =/- AT(AAT)ilA :

(3) For every b € R™, the system Ax = b is consistent, and the least norm
solution to this system is uniquely given by

x=AT(AAT) b
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Gram-Schmidt Orthogonalization and the QR-Factorization

We now define the Gram-Schmidt orthogonalization process for a set of linearly
independent vectors ay,...,a, € R™.
(This implies that n << m (why?))

The orthogonal vectors g1, ..., q, are defined inductively, as follows:

p1 = a1, a1 = p1/|lp1l,

j-1
pi=a—> (a,q)q and q =pi/llpll for 2<j<n.
i=1

For 1 <j<n, q; € Span{ay,...,a;}, so p; # 0 by the linear independence of
al,...,4;.

An elementary induction argument shows that the g;'s form an orthonormal basis
for span (a1, ..., an).
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Gram-Schmidt Orthogonalization and the QR-Factorization

If we now define

ri=lpill #0 and rj=(a;, q) for 1<i<j<n,

then
a = hiqi,
a = n2q1+rn2q,
a3 = ns3qgi+ mn3qgs+ ri33qgs,

n
an = E Fin Qj-
i=1
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Gram-Schmidt Orthogonalization and the QR-Factorization

Again suppose aj, ..., a, € R™ are linearly independent and set
A= [31 a ... an] ERmxn, R = [I’U] S Rnxn’ and Q = [ql q ... q,,] c RmMx" s

where r; =0, i > j. Then
A=QR,

where @ has orthonormal columns and R is an upper triangular n x n matrix.

In addition, R is invertible since the diagonal entries rj; are non-zero.

This is called the QR factorization of the matrix A.
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Full QR-Factorization

Suppose A € R™*" with m > n. Then there exists a permutation matrix
P € R"™" a unitary matrix Q@ € R™*™ and an upper triangular matrix R € R™*"
such that AP = QR.

Let @ € R™*" denote the first n columns of @, @, the remaining (m — n)
columns of Q, and R; € R™" the first n rows of R, then

AP = QR = [Q1 Q4] [ n ] — QiR (1)
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Full QR-Factorization

Moreover, we have the following:

(a) We may choose R to have nonnegative diagonal entries.

(b) If A'is of full rank, then we can choose R with positive diagonal entries, in
which case we obtain the condensed factorization A = Q1 Ry, where

R € R"*™ invertible and the columns of @ form an orthonormal basis for
Ran(A).

(c) If rank (A) = k < n, then

R R
R1:|:61 012:|7

where Ry is a k x k invertible upper triangular matrix and Ry, € R¥*(n=K),
In particular, this implies that AP = Q11[R11 Ri2], where Q11 are the first k
columns of Q. In this case, the columns of Q1 form an orthonormal basis for
the range of A and Ry; is invertible.
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Condenced QR-Factorization

Let A € R™*" have rank k < min{m, n}. Then there exist

Q € R™*  with orthonormal columns,
R € R**" full rank upper triangular, and

P e R"™" a permutation matrix

such that
AP = QR.

In particular, the columns of the matrix @ form a basis for the range of A.
Moreover, the matrix R can be written in the form

R=[R Ry,

where R; € R¥*¥ is nonsingular.
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Orthogonal Projections onto the Four Fundamental

Subspaces

Let A€ R™" have rank k < min{m, n}. Let A and AT have generalized QR
factorizations

AP = QIR Ry] and ATP = Q[R, Ry

Since row rank equals column rank, P € R"*" is a permutation matrix,
P c R™xm is a permutation matrix, Q € R™* and Q € R™* have orthonormal
columns, Ry, Ry € R¥¥k are both upper triangular nonsingular matrices,

R, € RKX(n=K) "and R, € R¥*(M=K)  Moreover,
QQT s the orthogonal projection onto Ran(A),
I — QQT isthe orthogonal projection onto NuII(AT),
6§T is the orthogonal projection onto Ran(AT), and

| — éaT is the orthogonal projection onto NuII(A)L
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Solving the Normal Equations with the QR Factorization

Let A€ R™" and b € R™ with k := rank (A) < min{m, n}.

The normal equations AT Ax = AT b yield solutions to the LLS problem
min 1 || Ax — bf3 .

We show how the QR factorization of A is used to solve these equations.
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Solving the Normal Equations with the QR Factorization

Let A€ R™" and b € R™ with k := rank (A) < min{m, n}.

The normal equations AT Ax = AT b yield solutions to the LLS problem
min 1 || Ax — bf3 .

We show how the QR factorization of A is used to solve these equations.

Suppose A has condensed QR factorization
AP = Q[R:1 R:]

where
P € R™" is a permutation matrix,
Q € R™*k has orthonormal columns,
R; € R**K is nonsingular and upper triangular, and
R, € RF*(n=k) with k = rank (A) < min{n, m}.
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Solving the Normal Equations with the QR Factorization

Since
A= Q[R RJPT
the normal equations A” Ax = AT b become

RY RT
P [Rﬂ QTQ[RL R|P'x=ATAx=ATb=P [ 4 ] QTb
2

or equivalently

since QTQ = /.
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Solving the Normal Equations with the QR Factorization

Multiply
P

on the left by PT to obtain
RTT
R2T

e [R or
[Rl Rz]P X = R2T Q b

Defining w := [Ry  Ro] PTx and setting b := Q7 b gives
RIT . _[R]¢

Take w = b and define £ := PTx. Then
[Ri R)]%=h.
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Solving the Normal Equations with the QR Factorization

We now need to solve the following equation for X:
[Ri Ro]%=bh.

To do this write

with %1 € R¥. If we assume that %; = 0, then

Rifi=[Ri R (’g) = b

which we can solve by taking
% =R;h

since Ry is an invertible upper triangular k x k matrix by construction.
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Solving the Normal Equations with the QR Factorization

Then 1r
x:PQ:P(Rlo b).

Does this x solve the normal equations?
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Solving the Normal Equations with the QR Factorization

Then

17
x:PQ:P<R10 b).

Does this x solve the normal equations?

R! B]

AT Ax = ATAP { 0

—17
=A"Q[R. RJ]PTP [RIO b}

= ATQRR b (since PTP = 1)
=A"Qb
=A"QQ"b
T T
= [Rﬂ Q7QQ"b (since AT = P [Rﬂ Q")
R2 R2
R/ A7 . T
=P| L Q"h (since Q" Q=1)
Ra

=ATp |
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Solving the Normal Equations with the QR Factorization

This derivation yields the following recipe for solving the normal equations:

AP = Q[R, R;] the general condensed QR factorization o(m?n)

b=Q"b a matrix-vector product o(km)
w1 = R; b a back solve o(k?)

- R 'b .

xX=P 0 a matrix-vector product o(kn).
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