Math 407: Linear Optimization

Lecture 16: The Linear Least Squares Problem II

Math Dept, University of Washington

February 28, 2018

・ロト ・回ト ・ヨト

Linear Least Squares

A linear least squares problem is one of the form

$$\mathcal{LLS}$$
 minimize $\frac{1}{2} \|Ax - b\|_2^2$,

where

 $A \in \mathbb{R}^{m \times n}, \ b \in \mathbb{R}^m, \ \text{ and } \ \|y\|_2^2 := y_1^2 + y_2^2 + \dots + y_m^2.$

Linear Least Squares

A linear least squares problem is one of the form

$$\mathcal{LLS} \quad \min_{x \in \mathbb{R}^n} \operatorname{minimize} \frac{1}{2} \|Ax - b\|_2^2,$$

where

$$A \in \mathbb{R}^{m \times n}, \ b \in \mathbb{R}^{m}, \ \text{ and } \ \|y\|_{2}^{2} := y_{1}^{2} + y_{2}^{2} + \dots + y_{m}^{2}$$

Theorem:

Consider the linear least squares problem \mathcal{LLS} .

- 1. A solution to the normal equations $A^T A x = A^T b$ always exists.
- 2. A solution to \mathcal{LLS} always exists.
- The linear least squares problem *LLS* has a unique solution if and only if Null(A) = {0} in which case (A^TA)⁻¹ exists and the unique solution is given by x̄ = (A^TA)⁻¹A^Tb.
- 4. If $\operatorname{Ran}(A) = \mathbb{R}^m$, then $(AA^T)^{-1}$ exists and $\overline{x} = A^T (AA^T)^{-1} b$ solves \mathcal{LLS} , indeed, $A\overline{x} = b$.

(日) (同) (三) (三)

Let $S \subset \mathbb{R}^m$ be a subspace and suppose $b \in \mathbb{R}^m$ is not in S. Find the point $\overline{z} \in S$ such that

$$\|\overline{z}-b\|_2 \leq \|z-b\|_2 \qquad \forall \ z \in S,$$

or equivalently, solve

$$\mathcal{D} \quad \min_{z \in S} \frac{1}{2} \left\| z - b \right\|_2^2 \; .$$

Let $S \subset \mathbb{R}^m$ be a subspace and suppose $b \in \mathbb{R}^m$ is not in S. Find the point $\overline{z} \in S$ such that

$$\|\overline{z}-b\|_2 \leq \|z-b\|_2 \qquad \forall \ z \in S,$$

or equivalently, solve

$$\mathcal{D} \quad \min_{z \in S} rac{1}{2} \left\| z - b
ight\|_2^2 \; .$$

Least Squares Connection: Suppose $S = \operatorname{Ran}(A)$. Then $\overline{z} \in \mathbb{R}^m$ solves \mathcal{D} if and only if there is an $\overline{x} \in \mathbb{R}^n$ with $\overline{z} = A\overline{x}$ such that \overline{x} solves \mathcal{LLS} .

Let $Q \in \mathbb{R}^{n \times k}$ be a matrix whose columns form an orthonormal basis for the subspace *S*, so that $k = \dim S$. Set $P = QQ^T$ and note that $Q^TQ = I_k$ the $k \times k$ identity matrix. Then

$$P^2 = QQ^T QQ^T = QI_k Q^T = QQ^T = P$$
 and $P^T = (QQ^T)^T = QQ^T = P$,

so that $P = P_s$ the orthogonal projection onto S !

Let $Q \in \mathbb{R}^{n \times k}$ be a matrix whose columns form an orthonormal basis for the subspace S, so that $k = \dim S$. Set $P = QQ^T$ and note that $Q^TQ = I_k$ the $k \times k$ identity matrix. Then

$$P^2 = QQ^T QQ^T = QI_k Q^T = QQ^T = P$$
 and $P^T = (QQ^T)^T = QQ^T = P$,

so that $P = P_s$ the orthogonal projection onto S !

Lemma:

- (1) The projection $P \in \mathbb{R}^{n \times n}$ is orthogonal if and only if $P = P^T$.
- (2) If the columns of the matrix Q ∈ ℝ^{n×k} form an orthonormal basis for the subspace S ⊂ ℝⁿ, then P := QQ^T is the orthogonal projection onto S.

Orthogonal Projections and Distance to a Subspace

Theorem: Let $S \subset \mathbb{R}^m$ be a subspace and let $b \in \mathbb{R}^m \setminus S$. Then the unique solution to the least distance problem

$$\mathcal{D} \qquad \underset{z \in S}{\operatorname{minimize}} \|z - b\|_2$$

is $\overline{z} := P_s b$, where P_s is the orthogonal projector onto S.

Theorem: Let $S \subset \mathbb{R}^m$ be a subspace and let $b \in \mathbb{R}^m \setminus S$. Then the unique solution to the least distance problem

$$\mathcal{D} \qquad \underset{z \in S}{\operatorname{minimize}} \|z - b\|_2$$

is $\overline{z} := P_s b$, where P_s is the orthogonal projector onto S.

Proposition: Let $A \in \mathbb{R}^{m \times n}$ with $m \le n$ and $\text{Null}(A) = \{0\}$. Then the orthogonal projector onto Ran(A) is given by

$$P_{\text{Ran}(A)} = A(A^T A)^{-1} A^T.$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let $A \in \mathbb{R}^{m \times n}$ and suppose that m < n. Then A is short and fat so A most likely has rank m, or equivalently, $\operatorname{Ran}(A) = \mathbb{R}^m$. So for the purposes of this discussion we assume that $\operatorname{rank}(A) = m$.

Minimal Norm Solutions to Ax = b

Let $A \in \mathbb{R}^{m \times n}$ and suppose that m < n. Then A is short and fat so A most likely has rank m, or equivalently, $\operatorname{Ran}(A) = \mathbb{R}^m$. So for the purposes of this discussion we assume that $\operatorname{rank}(A) = m$.

Since m < n, the set of solutions to Ax = b will be infinite since the nullity of A is n - m. Indeed, if x^0 is any particular solution to Ax = b, then the set of solutions is given by

 $x^{0} + \operatorname{Null}(A) := \{x^{0} + z \mid z \in \operatorname{Null}(A)\}.$

Let $A \in \mathbb{R}^{m \times n}$ and suppose that m < n. Then A is short and fat so A most likely has rank m, or equivalently, $\operatorname{Ran}(A) = \mathbb{R}^m$. So for the purposes of this discussion we assume that $\operatorname{rank}(A) = m$.

Since m < n, the set of solutions to Ax = b will be infinite since the nullity of A is n - m. Indeed, if x^0 is any particular solution to Ax = b, then the set of solutions is given by

$$x^0 + \operatorname{Null}(A) := \{x^0 + z \mid z \in \operatorname{Null}(A)\}.$$

In this setting, one might prefer the solution having least norm:

$$\min_{z \in \text{Null}(A)} \frac{1}{2} \| z + x^0 \|_2^2 .$$

This problem is of the form $\mathcal{D} \min \{ ||z - b||_2 | z \in S \}$ whose solution is $\overline{z} = P_s b$ when S is a subspace.

Consequently, the solution is given by $\overline{z} = -P_s x^0$ where P_s is now the orthogonal projection onto S := Null(A).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

A Formula for $P_{Null(A)}$

 $\text{Observe that} \quad P_{_{\text{Null}(A)}} = P_{_{\text{Ran}(A}{}^{\mathcal{T}})^{\perp}} = I - P_{_{\text{Ran}(A}{}^{\mathcal{T}})} \;.$

メロト メロト メヨト メ

A Formula for $P_{Null(A)}$

$$\label{eq:Observe} \text{Observe that} \quad P_{\scriptscriptstyle \mathsf{Null}(A)} = P_{\scriptscriptstyle \mathsf{Ran}(A^{\mathcal{T}})^{\perp}} = I - P_{\scriptscriptstyle \mathsf{Ran}(A^{\mathcal{T}})} \ .$$

We have already shown that if $M \in \mathbb{R}^{p \times q}$ satisfies Null $(M) = \{0\}$, then $P_{\text{Ran}(M)} = M(M^T M)^{-1}M^T$. If we take $M = A^T$, then our assumption that $\text{Ran}(A) = \mathbb{R}^m$ gives

$$\operatorname{Null}(M) = \operatorname{Null}(A^{\mathsf{T}}) = \operatorname{Ran}(A)^{\perp} = (\mathbb{R}^m)^{\perp} = \{0\}.$$

Hence,

$$\begin{split} & P_{{}_{\mathsf{Ran}(A^{\mathsf{T}})}} = A^{\mathsf{T}}(AA^{\mathsf{T}})^{-1}A \quad \text{and} \\ & P_{{}_{\mathsf{Null}(A)}} = P_{{}_{\mathsf{Ran}(A^{\mathsf{T}})^{\perp}}} = I - P_{{}_{\mathsf{Ran}(A^{\mathsf{T}})}} = I - A^{\mathsf{T}}(AA^{\mathsf{T}})^{-1}A \; . \end{split}$$

イロト イヨト イヨト イ

Solution to $\mathcal{D} \min \{ \|z - b\|_2 | z \in S \}$

We can take $x^0 := A^T (AA^T)^{-1}b$ as our particular solution to Ax = b in \mathcal{D} since $Ax^0 = AA^T (AA^T)^{-1}b = b$.

メロト メロト メヨト メ

We can take $x^0 := A^T (AA^T)^{-1} b$ as our particular solution to Ax = b in \mathcal{D} since $Ax^0 = AA^T (AA^T)^{-1} b = b$.

Hence, our solution to $\ensuremath{\mathcal{D}}$ is

$$\begin{aligned} \overline{x} &= x^{0} + P_{\text{Null}(A)}(-x^{0}) \\ &= x^{0} + (I - A^{T}(AA^{T})^{-1}A)(-x^{0}) \\ &= A^{T}(AA^{T})^{-1}Ax^{0} \\ &= A^{T}(AA^{T})^{-1}AA^{T}(AA^{T})^{-1}b \\ &= A^{T}(AA^{T})^{-1}b \\ &= x^{0}. \end{aligned}$$

That is, $x^0 = A^T (AA^T)^{-1} b$ is the least norm solution to Ax = b.

Image: A math the second se

Theorem:

- Let $A \in \mathbb{R}^{m \times n}$ be such that $m \leq n$ and $\operatorname{Ran}(A) = \mathbb{R}^m$.
- (1) The matrix AA^T is invertible.
- (2) The orthogonal projection onto Null(A) is given by

$$P_{\text{Null}(A)} = I - A^T (A A^T)^{-1} A \; .$$

(3) For every $b \in \mathbb{R}^m$, the system Ax = b is consistent, and the least norm solution to this system is uniquely given by

$$\overline{x} = A^T (A A^T)^{-1} b \; .$$

Gram-Schmidt Orthogonalization and the QR-Factorization

We now define the Gram-Schmidt orthogonalization process for a set of linearly independent vectors $a_1, \ldots, a_n \in \mathbb{R}^m$. (This implies that $n \le m$ (why?))

The orthogonal vectors q_1, \ldots, q_n are defined inductively, as follows:

$$p_1 = a_1, \qquad q_1 = p_1/\|p_1\|,$$

$$p_j = a_j - \sum_{i=1}^{j-1} \langle a_j, q_j \rangle q_i$$
 and $q_j = p_j / \|p_j\|$ for $2 \le j \le n$.

For $1 \le j \le n$, $q_j \in \text{Span}\{a_1, \ldots, a_j\}$, so $p_j \ne 0$ by the linear independence of a_1, \ldots, a_j .

An elementary induction argument shows that the q_j 's form an orthonormal basis for span (a_1, \ldots, a_n) .

イロト イポト イヨト イヨ

If we now define

$$r_{jj} = \|p_j\|
eq 0$$
 and $r_{ij} = \langle a_j, \ q_i
angle$ for $1 \leq i < j \leq n,$

then

$$a_{1} = r_{11} q_{1},$$

$$a_{2} = r_{12} q_{1} + r_{22} q_{2},$$

$$a_{3} = r_{13} q_{1} + r_{23} q_{2} + r_{33} q_{3},$$

$$\vdots$$

$$a_{n} = \sum_{i=1}^{n} r_{in} q_{i}.$$

Gram-Schmidt Orthogonalization and the QR-Factorization

Again suppose $a_1, \ldots, a_n \in \mathbb{R}^m$ are linearly independent and set

 $A = [a_1 \ a_2 \ \dots \ a_n] \in \mathbb{R}^{m \times n}, \ R = [r_{ij}] \in \mathbb{R}^{n \times n}, \text{ and } Q = [q_1 \ q_2 \ \dots \ q_n] \in \mathbb{R}^{m \times n},$

where $r_{ij} = 0$, i > j. Then

$$A = QR$$
,

where Q has orthonormal columns and R is an upper triangular $n \times n$ matrix.

In addition, R is invertible since the diagonal entries r_{jj} are non-zero.

This is called the *QR factorization* of the matrix *A*.

イロト イポト イヨト イヨト

Suppose $A \in \mathbb{R}^{m \times n}$ with $m \ge n$. Then there exists a permutation matrix $P \in \mathbb{R}^{n \times n}$, a unitary matrix $Q \in \mathbb{R}^{m \times m}$, and an upper triangular matrix $R \in \mathbb{R}^{m \times n}$ such that AP = QR.

Let $Q_1 \in \mathbb{R}^{m \times n}$ denote the first *n* columns of *Q*, Q_2 the remaining (m - n) columns of *Q*, and $R_1 \in \mathbb{R}^{n \times n}$ the first *n* rows of *R*, then

$$AP = QR = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} = Q_1 R_1.$$
(1)

< ロ > < 同 > < 三 > < 三

Full QR-Factorization

Moreover, we have the following:

- (a) We may choose R to have nonnegative diagonal entries.
- (b) If A is of full rank, then we can choose R with positive diagonal entries, in which case we obtain the condensed factorization A = Q₁R₁, where R₁ ∈ ℝ^{n×n} invertible and the columns of Q₁ form an orthonormal basis for Ran(A).

(c) If rank
$$(A) = k < n$$
, then

$$R_1 = \begin{bmatrix} R_{11} & R_{12} \\ 0 & 0 \end{bmatrix},$$

where R_{11} is a $k \times k$ invertible upper triangular matrix and $R_{12} \in \mathbb{R}^{k \times (n-k)}$. In particular, this implies that $AP = Q_{11}[R_{11} \ R_{12}]$, where Q_{11} are the first k columns of Q. In this case, the columns of Q_{11} form an orthonormal basis for the range of A and R_{11} is invertible.

< ロ > < 同 > < 三 > < 三

Let $A \in \mathbb{R}^{m \times n}$ have rank $k \leq \min\{m, n\}$. Then there exist

 $Q \in \mathbb{R}^{m \times k}$ with orthonormal columns, $R \in \mathbb{R}^{k \times n}$ full rank upper triangular, and $P \in \mathbb{R}^{n \times n}$ a permutation matrix

such that

$$AP = QR.$$

In particular, the columns of the matrix Q form a basis for the range of A. Moreover, the matrix R can be written in the form

$$R=[R_1 \ R_2],$$

where $R_1 \in \mathbb{R}^{k \times k}$ is nonsingular.

Orthogonal Projections onto the Four Fundamental Subspaces

Let $A \in \mathbb{R}^{m \times n}$ have rank $k \leq \min\{m, n\}$. Let A and A^T have generalized QR factorizations

$$AP = Q[R_1 \ R_2] \text{ and } A^T \widetilde{P} = \widetilde{Q}[\widetilde{R}_1 \ \widetilde{R}_2].$$

Since row rank equals column rank, $P \in \mathbb{R}^{n \times n}$ is a permutation matrix, $\widetilde{P} \in \mathbb{R}^{m \times m}$ is a permutation matrix, $Q \in \mathbb{R}^{m \times k}$ and $\widetilde{Q} \in \mathbb{R}^{n \times k}$ have orthonormal columns, $R_1, \widetilde{R}_1 \in \mathbb{R}^{k \times k}$ are both upper triangular nonsingular matrices, $R_2 \in \mathbb{R}^{k \times (n-k)}$, and $\widetilde{R}_2 \in \mathbb{R}^{k \times (m-k)}$. Moreover,

$$QQ^{T}$$
 is the orthogonal projection onto $Ran(A)$,

$$I - QQ^T$$
 is the orthogonal projection onto Null (A^T) ,

$$Q\bar{Q}^{T}$$
 is the orthogonal projection onto $\operatorname{Ran}(A^{T})$, and

$$I - \widetilde{Q}\widetilde{Q}^{T}$$
 is the orthogonal projection onto $\operatorname{Null}(A)^{\perp}$.

Solving the Normal Equations with the QR Factorization

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ with $k := \operatorname{rank}(A) \le \min\{m, n\}$.

The normal equations $A^T A x = A^T b$ yield solutions to the LLS problem

$$\min \tfrac{1}{2} \left\| Ax - b \right\|_2^2 \; .$$

We show how the QR factorization of A is used to solve these equations.

Solving the Normal Equations with the QR Factorization

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ with $k := \operatorname{rank}(A) \le \min\{m, n\}$.

The normal equations $A^T A x = A^T b$ yield solutions to the LLS problem

$$\min \tfrac{1}{2} \left\| Ax - b \right\|_2^2 \; .$$

We show how the QR factorization of A is used to solve these equations.

Suppose A has condensed QR factorization

$$AP = Q[R_1 \ R_2]$$

where

 $P \in \mathbb{R}^{n \times n}$ is a permutation matrix, $Q \in \mathbb{R}^{m \times k}$ has orthonormal columns, $R_1 \in \mathbb{R}^{k \times k}$ is nonsingular and upper triangular, and $R_2 \in \mathbb{R}^{k \times (n-k)}$ with $k = \operatorname{rank}(A) \le \min\{n, m\}$. Since

$$A = Q[R_1 \ R_2]P^T$$

the normal equations $A^T A x = A^T b$ become

$$P\begin{bmatrix} R_1^T\\ R_2^T\end{bmatrix}Q^TQ\begin{bmatrix} R_1 & R_2\end{bmatrix}P^Tx = A^TAx = A^Tb = P\begin{bmatrix} R_1^T\\ R_2^T\end{bmatrix}Q^Tb,$$

or equivalently

$$P\begin{bmatrix} R_1^T\\ R_2^T\end{bmatrix}\begin{bmatrix} R_1 & R_2\end{bmatrix}P^Tx = P\begin{bmatrix} R_1^T\\ R_2^T\end{bmatrix}Q^Tb.$$

since $Q^T Q = I_k$.

Solving the Normal Equations with the QR Factorization

Multiply

$$P\begin{bmatrix} R_1^T\\ R_2^T \end{bmatrix} \begin{bmatrix} R_1 & R_2 \end{bmatrix} P^T x = P\begin{bmatrix} R_1^T\\ R_2^T \end{bmatrix} Q^T b$$

on the left by P^T to obtain

$$\begin{bmatrix} R_1^T \\ R_2^T \end{bmatrix} \begin{bmatrix} R_1 & R_2 \end{bmatrix} P^T x = \begin{bmatrix} R_1^T \\ R_2^T \end{bmatrix} Q^T b$$

Defining $w := \begin{bmatrix} R_1 & R_2 \end{bmatrix} P^T x$ and setting $\hat{b} := Q^T b$ gives

$$\begin{bmatrix} R_1^T \\ R_2^T \end{bmatrix} w = \begin{bmatrix} R_1^T \\ R_2^T \end{bmatrix} \hat{b}.$$

Take $w = \hat{b}$ and define $\hat{x} := P^T x$. Then

$$\begin{bmatrix} R_1 & R_2 \end{bmatrix} \hat{x} = \hat{b}.$$

We now need to solve the following equation for \hat{x} :

$$\begin{bmatrix} R_1 & R_2 \end{bmatrix} \hat{x} = \hat{b}.$$

To do this write

$$\hat{x} = \begin{pmatrix} \hat{x}_1 \\ \hat{x}_2 \end{pmatrix}$$

with $\hat{x}_1 \in \mathbb{R}^k$. If we assume that $\hat{x}_2 = 0$, then

$$R_1 \hat{x}_1 = \begin{bmatrix} R_1 & R_2 \end{bmatrix} \begin{pmatrix} \hat{x}_1 \\ 0 \end{pmatrix} = \hat{b}$$

which we can solve by taking

$$\hat{x}_1 = R_1^{-1}\hat{b}$$

since R_1 is an invertible upper triangular $k \times k$ matrix by construction.

Solving the Normal Equations with the QR Factorization

Then

$$x = P\hat{x} = P\begin{pmatrix} R_1^{-1}\hat{b}\\ 0 \end{pmatrix}.$$

Does this x solve the normal equations?

Solving the Normal Equations with the QR Factorization

Then

$$x = P\hat{x} = P\begin{pmatrix} R_1^{-1}\hat{b}\\ 0 \end{pmatrix}.$$

Does this x solve the normal equations?

$$A^{T}A\overline{x} = A^{T}AP \begin{bmatrix} R_{1}^{-1}\hat{b} \\ 0 \end{bmatrix}$$

= $A^{T}Q \begin{bmatrix} R_{1} & R_{2} \end{bmatrix} P^{T}P \begin{bmatrix} R_{1}^{-1}\hat{b} \\ 0 \end{bmatrix}$
= $A^{T}QR_{1}R_{1}^{-1}\hat{b}$ (since $P^{T}P = I$)
= $A^{T}Q\hat{b}$
= $A^{T}QQ^{T}b$
= $P \begin{bmatrix} R_{1}^{T} \\ R_{2}^{T} \end{bmatrix} Q^{T}QQ^{T}b$ (since $A^{T} = P \begin{bmatrix} R_{1}^{T} \\ R_{2}^{T} \end{bmatrix} Q^{T}$)
= $P \begin{bmatrix} R_{1}^{T} \\ R_{2}^{T} \end{bmatrix} Q^{T}b$ (since $Q^{T}Q = I$)
= $A^{T}b$

Image: A mathematical states and a mathem

This derivation yields the following recipe for solving the normal equations:

$$AP = Q[R_1 \ R_2] \quad \text{the general condensed QR factorization} \quad o(m^2 n)$$
$$\hat{b} = Q^T b \quad \text{a matrix-vector product} \quad o(km)$$
$$\overline{w}_1 = R_1^{-1} \hat{b} \quad \text{a back solve} \quad o(k^2)$$
$$\overline{x} = P \begin{bmatrix} R_1^{-1} \hat{b} \\ 0 \end{bmatrix} \quad \text{a matrix-vector product} \quad o(kn).$$