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Linear Least Squares

A linear least squares problem is one of the form

LLS minimize
x∈Rn

1
2 ‖Ax − b‖22 ,

where
A ∈ Rm×n, b ∈ Rm, and ‖y‖22 := y2

1 + y2
2 + · · ·+ y2

m .

Theorem:
Consider the linear least squares problem LLS .

1. A solution to the normal equations ATAx = ATb always exists.

2. A solution to LLS always exists.

3. The linear least squares problem LLS has a unique solution if and only if
Null(A) = {0} in which case (ATA)−1 exists and the unique solution is given
by x = (ATA)−1ATb.

4. If Ran(A) = Rm, then (AAT )−1 exists and x = AT (AAT )−1b solves LLS ,
indeed, Ax = b.

Lecture 16: The Linear Least Squares Problem II (Math Dept, University of Washington)Math 407: Linear Optimization February 28, 2018 2 / 22



Linear Least Squares

A linear least squares problem is one of the form

LLS minimize
x∈Rn

1
2 ‖Ax − b‖22 ,

where
A ∈ Rm×n, b ∈ Rm, and ‖y‖22 := y2

1 + y2
2 + · · ·+ y2

m .

Theorem:
Consider the linear least squares problem LLS .

1. A solution to the normal equations ATAx = ATb always exists.

2. A solution to LLS always exists.

3. The linear least squares problem LLS has a unique solution if and only if
Null(A) = {0} in which case (ATA)−1 exists and the unique solution is given
by x = (ATA)−1ATb.

4. If Ran(A) = Rm, then (AAT )−1 exists and x = AT (AAT )−1b solves LLS ,
indeed, Ax = b.

Lecture 16: The Linear Least Squares Problem II (Math Dept, University of Washington)Math 407: Linear Optimization February 28, 2018 2 / 22



Distance to a Subspace

Let S ⊂ Rm be a subspace and suppose b ∈ Rm is not in S .
Find the point z ∈ S such that

‖z − b‖2 ≤ ‖z − b‖2 ∀ z ∈ S ,

or equivalently, solve
D min

z∈S
1
2 ‖z − b‖22 .

Least Squares Connection:
Suppose S = Ran(A).
Then z ∈ Rm solves D if and only if there is an x ∈ Rn with z = Ax such that x
solves LLS .
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Orthogonal Projections and Orthonormal Bases

Let Q ∈ Rn×k be a matrix whose columns form an orthonormal basis for the
subspace S , so that k = dimS .
Set P = QQT and note that QTQ = Ik the k × k identity matrix. Then

P2=QQTQQT=QIkQ
T=QQT=P and PT=(QQT )T=QQT=P,

so that P = PS the orthogonal projection onto S !

Lemma:

(1) The projection P ∈ Rn×n is orthogonal if and only if P = PT .

(2) If the columns of the matrix Q ∈ Rn×k form an orthonormal basis for the
subspace S ⊂ Rn, then P := QQT is the orthogonal projection onto S .
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Orthogonal Projections and Distance to a Subspace

Theorem: Let S ⊂ Rm be a subspace and let b ∈ Rm \ S . Then the unique
solution to the least distance problem

D minimize
z∈S

‖z − b‖2

is z := PSb, where PS is the orthogonal projector onto S .

Proposition: Let A ∈ Rm×n with m ≤ n and Null(A) = {0}. Then the orthogonal
projector onto Ran(A) is given by

PRan(A) = A(ATA)−1AT .
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Minimal Norm Solutions to Ax = b

Let A ∈ Rm×n and suppose that m < n. Then A is short and fat so A most likely
has rank m, or equivalently, Ran(A) = Rm . So for the purposes of this discussion
we assume that rank(A) = m.

Since m < n, the set of solutions to Ax = b will be infinite since the nullity of A is
n −m. Indeed, if x0 is any particular solution to Ax = b, then the set of solutions
is given by

x0 + Null(A) :=
{
x0 + z

∣∣ z ∈ Null(A)
}

.

In this setting, one might prefer the solution having least norm:

min
z∈Null(A)

1
2

∥∥z + x0
∥∥2
2
.

This problem is of the form D min {‖z − b‖2 | z ∈ S } whose solution is z = PSb
when S is a subspace.
Consequently, the solution is given by z = −PSx

0 where PS is now the orthogonal
projection onto S := Null(A).
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A Formula for PNull(A)

Observe that PNull(A) = PRan(AT )⊥ = I − PRan(AT ) .

We have already shown that if M ∈ Rp×q satisfies Null(M) = {0}, then
PRan(M) = M(MTM)−1MT .
If we take M = AT , then our assumption that Ran(A) = Rm gives

Null(M) = Null(AT ) = Ran(A)⊥ = (Rm)⊥ = {0}.

Hence,
PRan(AT ) = AT (AAT )−1A and

PNull(A) = PRan(AT )⊥ = I − PRan(AT ) = I − AT (AAT )−1A .
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Solution to D min {‖z − b‖2 | z ∈ S }

We can take x0 := AT (AAT )−1b as our particular solution to Ax = b in D since
Ax0 = AAT (AAT )−1b = b.

Hence, our solution to D is

x = x0 + PNull(A)(−x0)

= x0 + (I − AT (AAT )−1A)(−x0)

= AT (AAT )−1Ax0

= AT (AAT )−1AAT (AAT )−1b

= AT (AAT )−1b

= x0.

That is, x0 = AT (AAT )−1b is the least norm solution to Ax = b.
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Solution to D min {‖z − b‖2 | z ∈ S }

Theorem:
Let A ∈ Rm×n be such that m ≤ n and Ran(A) = Rm.

(1) The matrix AAT is invertible.

(2) The orthogonal projection onto Null(A) is given by

PNull(A) = I − AT (AAT )−1A .

(3) For every b ∈ Rm, the system Ax = b is consistent, and the least norm
solution to this system is uniquely given by

x = AT (AAT )−1b .
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Gram-Schmidt Orthogonalization and the QR-Factorization

We now define the Gram-Schmidt orthogonalization process for a set of linearly
independent vectors a1, . . . , an ∈ Rm.
(This implies that n <≤ m (why?))

The orthogonal vectors q1, . . . , qn are defined inductively, as follows:

p1 = a1, q1 = p1/‖p1‖,

pj = aj −
j−1∑
i=1

〈aj , qj〉 qi and qj = pj/‖pj‖ for 2 ≤ j ≤ n.

For 1 ≤ j ≤ n, qj ∈ Span{a1, . . . , aj}, so pj 6= 0 by the linear independence of
a1, . . . , aj .

An elementary induction argument shows that the qj ’s form an orthonormal basis
for span (a1, . . . , an).
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Gram-Schmidt Orthogonalization and the QR-Factorization

If we now define

rjj = ‖pj‖ 6= 0 and rij = 〈aj , qi 〉 for 1 ≤ i < j ≤ n,

then

a1 = r11 q1,

a2 = r12 q1 + r22 q2,

a3 = r13 q1 + r23 q2 + r33 q3,

...

an =
n∑

i=1

rin qi .
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Gram-Schmidt Orthogonalization and the QR-Factorization

Again suppose a1, . . . , an ∈ Rm are linearly independent and set

A = [a1 a2 . . . an] ∈ Rm×n, R = [rij ] ∈ Rn×n, and Q = [q1 q2 . . . qn] ∈ Rm×n ,

where rij = 0, i > j . Then
A = QR ,

where Q has orthonormal columns and R is an upper triangular n × n matrix.

In addition, R is invertible since the diagonal entries rjj are non-zero.

This is called the QR factorization of the matrix A.
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Full QR-Factorization

Suppose A ∈ Rm×n with m ≥ n. Then there exists a permutation matrix
P ∈ Rn×n, a unitary matrix Q ∈ Rm×m, and an upper triangular matrix R ∈ Rm×n

such that AP = QR.

Let Q1 ∈ Rm×n denote the first n columns of Q, Q2 the remaining (m − n)
columns of Q, and R1 ∈ Rn×n the first n rows of R, then

AP = QR = [Q1 Q2]

[
R1

0

]
= Q1R1. (1)

Lecture 16: The Linear Least Squares Problem II (Math Dept, University of Washington)Math 407: Linear Optimization February 28, 2018 13 / 22



Full QR-Factorization

Moreover, we have the following:

(a) We may choose R to have nonnegative diagonal entries.

(b) If A is of full rank, then we can choose R with positive diagonal entries, in
which case we obtain the condensed factorization A = Q1R1, where
R1 ∈ Rn×n invertible and the columns of Q1 form an orthonormal basis for
Ran(A).

(c) If rank (A) = k < n, then

R1 =

[
R11 R12

0 0

]
,

where R11 is a k × k invertible upper triangular matrix and R12 ∈ Rk×(n−k).
In particular, this implies that AP = Q11[R11 R12], where Q11 are the first k
columns of Q. In this case, the columns of Q11 form an orthonormal basis for
the range of A and R11 is invertible.
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Condenced QR-Factorization

Let A ∈ Rm×n have rank k ≤ min{m, n}. Then there exist

Q ∈ Rm×k with orthonormal columns,

R ∈ Rk×n full rank upper triangular, and

P ∈ Rn×n a permutation matrix

such that
AP = QR.

In particular, the columns of the matrix Q form a basis for the range of A.
Moreover, the matrix R can be written in the form

R = [R1 R2],

where R1 ∈ Rk×k is nonsingular.
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Orthogonal Projections onto the Four Fundamental
Subspaces

Let A ∈ Rm×n have rank k ≤ min{m, n}. Let A and AT have generalized QR
factorizations

AP = Q[R1 R2] and AT P̃ = Q̃[R̃1 R̃2].

Since row rank equals column rank, P ∈ Rn×n is a permutation matrix,
P̃ ∈ Rm×m is a permutation matrix, Q ∈ Rm×k and Q̃ ∈ Rn×k have orthonormal
columns, R1, R̃1 ∈ Rk×k are both upper triangular nonsingular matrices,
R2 ∈ Rk×(n−k), and R̃2 ∈ Rk×(m−k). Moreover,

QQT is the orthogonal projection onto Ran(A),

I − QQT is the orthogonal projection onto Null(AT ),

Q̃Q̃T is the orthogonal projection onto Ran(AT ), and

I − Q̃Q̃T is the orthogonal projection onto Null(A)⊥.
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Solving the Normal Equations with the QR Factorization
Let A ∈ Rm×n and b ∈ Rm with k := rank (A) ≤ min{m, n}.

The normal equations ATAx = ATb yield solutions to the LLS problem

min 1
2 ‖Ax − b‖22 .

We show how the QR factorization of A is used to solve these equations.

Suppose A has condensed QR factorization

AP = Q[R1 R2]

where
P ∈ Rn×n is a permutation matrix,
Q ∈ Rm×k has orthonormal columns,
R1 ∈ Rk×k is nonsingular and upper triangular, and
R2 ∈ Rk×(n−k) with k = rank (A) ≤ min{n,m}.
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Solving the Normal Equations with the QR Factorization

Since
A = Q[R1 R2]PT

the normal equations ATAx = ATb become

P

[
RT
1

RT
2

]
QTQ

[
R1 R2

]
PT x = ATAx = ATb = P

[
RT
1

RT
2

]
QTb,

or equivalently

P

[
RT
1

RT
2

] [
R1 R2

]
PT x = P

[
RT
1

RT
2

]
QTb.

since QTQ = Ik .
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Solving the Normal Equations with the QR Factorization

Multiply

P

[
RT
1

RT
2

] [
R1 R2

]
PT x = P

[
RT
1

RT
2

]
QTb

on the left by PT to obtain[
RT
1

RT
2

] [
R1 R2

]
PT x =

[
RT
1

RT
2

]
QTb

Defining w :=
[
R1 R2

]
PT x and setting b̂ := QTb gives[

RT
1

RT
2

]
w =

[
RT
1

RT
2

]
b̂.

Take w = b̂ and define x̂ := PT x . Then[
R1 R2

]
x̂ = b̂.

Lecture 16: The Linear Least Squares Problem II (Math Dept, University of Washington)Math 407: Linear Optimization February 28, 2018 19 / 22



Solving the Normal Equations with the QR Factorization

We now need to solve the following equation for x̂ :[
R1 R2

]
x̂ = b̂.

To do this write

x̂ =

(
x̂1
x̂2

)
with x̂1 ∈ Rk . If we assume that x̂2 = 0, then

R1x̂1 =
[
R1 R2

](x̂1
0

)
= b̂

which we can solve by taking
x̂1 = R−11 b̂

since R1 is an invertible upper triangular k × k matrix by construction.
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Solving the Normal Equations with the QR Factorization

Then

x = Px̂ = P

(
R−11 b̂

0

)
.

Does this x solve the normal equations?

ATAx = ATAP

[
R−1
1 b̂
0

]
= ATQ

[
R1 R2

]
PTP

[
R−1
1 b̂
0

]
= ATQR1R

−1
1 b̂ (since PTP = I )

= ATQb̂

= ATQQTb

= P

[
RT
1

RT
2

]
QTQQTb (since AT = P

[
RT
1

RT
2

]
QT )

= P

[
RT
1

RT
2

]
QTb (since QTQ = I )

= ATb !
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Solving the Normal Equations with the QR Factorization

This derivation yields the following recipe for solving the normal equations:

AP = Q[R1 R2] the general condensed QR factorization o(m2n)

b̂ = QTb a matrix-vector product o(km)

w1 = R−11 b̂ a back solve o(k2)

x = P

[
R−11 b̂

0

]
a matrix-vector product o(kn).
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