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Matrices in Rm×n

A ∈ Rm×n

columns rows

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn



=
[
a•1 a•2 . . . a•n

]
=


a1•
a2•

...
am•



AT =


a11 a21 . . . am1

a12 a22 . . . am2

...
...

. . .
...

a1n a2n . . . amn

 =


aT•1
aT•2

...
aT•n

 =
[
aT1• aT2• . . . aTm•

]
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Matrix Vector Multiplication

A column space view of matrix vector multiplication.


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn




x1
x2
...
xn



= x1


a11
a21
...

am1

+ x2


a12
a22
...

am2

+ · · ·+ xn


a1n
a2n
...

amn



= x1 a•1 + x2 a•2 + · · · + xn a•n

A linear combination of the columns.

Lecture 1: Linear Algebra Review Linear Programming 4 / 24



Matrix Vector Multiplication

A column space view of matrix vector multiplication.


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn




x1
x2
...
xn

 = x1


a11
a21
...

am1



+ x2


a12
a22
...

am2

+ · · ·+ xn


a1n
a2n
...

amn



= x1 a•1 + x2 a•2 + · · · + xn a•n

A linear combination of the columns.

Lecture 1: Linear Algebra Review Linear Programming 4 / 24



Matrix Vector Multiplication

A column space view of matrix vector multiplication.


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn




x1
x2
...
xn

 = x1


a11
a21
...

am1

+ x2


a12
a22
...

am2



+ · · ·+ xn


a1n
a2n
...

amn



= x1 a•1 + x2 a•2 + · · · + xn a•n

A linear combination of the columns.

Lecture 1: Linear Algebra Review Linear Programming 4 / 24



Matrix Vector Multiplication

A column space view of matrix vector multiplication.


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn




x1
x2
...
xn

 = x1


a11
a21
...

am1

+ x2


a12
a22
...

am2

+ · · ·+ xn


a1n
a2n
...

amn



= x1 a•1 + x2 a•2 + · · · + xn a•n

A linear combination of the columns.

Lecture 1: Linear Algebra Review Linear Programming 4 / 24



Matrix Vector Multiplication

A column space view of matrix vector multiplication.


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn




x1
x2
...
xn

 = x1


a11
a21
...

am1

+ x2


a12
a22
...

am2

+ · · ·+ xn


a1n
a2n
...

amn



= x1 a•1 + x2 a•2 + · · · + xn a•n

A linear combination of the columns.

Lecture 1: Linear Algebra Review Linear Programming 4 / 24



Matrix Vector Multiplication

A column space view of matrix vector multiplication.


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn




x1
x2
...
xn

 = x1


a11
a21
...

am1

+ x2


a12
a22
...

am2

+ · · ·+ xn


a1n
a2n
...

amn



= x1 a•1 + x2 a•2 + · · · + xn a•n

A linear combination of the columns.

Lecture 1: Linear Algebra Review Linear Programming 4 / 24



The Range of a Matrix

Let A ∈ Rm×n (an m × n matrix having real entries).

Range of A

Ran (A) = {y ∈ Rm | ∃ x ∈ Rn such that y = Ax }

Ran (A) = the linear span of the columns of A
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Two Special Subspaces

Let v1, . . . , vk ∈ Rn.

The linear span of v1, . . . , vk :

Span [v1, . . . , vk ] = {y | y = ξ1v1 + ξ2v2 + · · ·+ ξkvk , ξ1, . . . , ξk ∈ R}

The subspace orthogonal to v1, . . . , vk :

{v1, . . . , vk}⊥ = {z ∈ Rn | z • vi = 0, i = 1, . . . , k }

Facts: {v1, . . . , vk}⊥ = Span [v1, . . . , vk ]⊥

Span [v1, . . . , vk ] =
[
Span [v1, . . . , vk ]⊥

]⊥
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Matrix Vector Multiplication

A row space view of matrix vector multiplication.


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn




x1
x2
...
xn

 =


a1• • x
a2• • x

...
am• • x

 =


∑n

i=1 a1ixi∑n
i=1 a2ixi
...∑n

i=1 amixi



The dot product of x with the rows of A.

Lecture 1: Linear Algebra Review Linear Programming 7 / 24



The Null Space of a Matrix

Let A ∈ Rm×n (an m × n matrix having real entries).

Null Space of A
Nul (A) = {x ∈ Rn |Ax = 0}

Nul (A) = subspace orthogonal to the rows of A

= Span [a1•, a2•, . . . , am•]
⊥

= Ran
(
AT
)⊥

Fundamental Theorem of the Alternative:

Nul (A) = Ran
(
AT
)⊥

Ran (A) = Nul
(
AT
)⊥
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Block Structured Matrices

A=


3 −4 1 1 0 0
2 2 0 0 1 0
−1 0 0 0 0 1

0 0 0 2 1 4
0 0 0 1 0 3



=


3 −4 1 1 0 0
2 2 0 0 1 0
−1 0 0 0 0 1

0 0 0 2 1 4
0 0 0 1 0 3

=

[
B I3×3
02×3 C

]

where

B =

 3 −4 1
2 2 0
−1 0 0

 , C =

[
2 1 4
1 0 3

]
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Multiplication of Block Structured Matrices

Consider the matrix product AM, where

A =


3 −4 1 1 0 0
2 2 0 0 1 0

−1 0 0 0 0 1
0 0 0 2 1 4
0 0 0 1 0 3

 and M =


1 2
0 4

−1 −1
2 −1
4 3

−2 0



Can we exploit the structure of A?
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Multiplication of Block Structured Matrices

AM =

[
B I3×3

02×3 C

] [
X
Y

]

=

[
BX + Y

CY

]

=



 2 −11
2 12

−1 −2

 +

 2 −1
4 3

−2 0


[

4 1
−4 −1

]



=


4 −12
6 15
1 −2
4 1

−4 −1

 .
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Solving Systems of Linear equations

Let A ∈ Rm×n and b ∈ Rm.
Find all solutions x ∈ Rn to the system Ax = b.

The solution set is either empty, a single point, or an infinite set

.

If a solution x0 ∈ Rn exists, then the set of solutions is given by

x0 + Nul (A) .
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Gaussian Elimination and the 3 Elementary Row
Operations

We solve the system Ax = b by transforming the augmented matrix

[A | b]

into upper echelon form using the three elementary row operations.

This process is called Gaussian elimination.

The three elementary row operations.

1 Interchange any two rows.

2 Multiply any row by a non-zero constant.

3 Replace any row by itself plus a multiple of any other row.

These elementary row operations can be interpreted as multiplying the augmented
matrix on the left by a special nonsingular matrix.
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Exchange and Permutation Matrices

An exchange matrix is given by permuting any two columns of the identity.

Multiplying any 4× n matrix on the left by the exchange matrix
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


will exchange the second and fourth rows of the matrix.

(multiplication of a m × 4 matrix on the right by this exchanges the second and
fourth columns.)
A permutation matrix is obtained by permuting the columns of the identity matrix.
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Notes on Matrix Multiplication

Let A = [aij ]m×n ∈ Rm×n.

Left Multiplication of A:
When multiplying A on the left by an m ×m matrix M, it is often useful to think
of this as an action on the rows of A.

For example, left multiplication by a permutation matrix permutes the rows of the
matrix.

However, mechanically, left multiplication corresponds to matrix vector
multiplication on the columns.

MA = [Ma•1 Ma•2 · · · Ma•n]
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Notes on Matrix Multiplication

Let A = [aij ]m×n ∈ Rm×n.

Right Multiplication of A:
When multiplying A on the right by an n × n matrix N, it is often useful to think
of this as an action on the columns of A.

For example, right multiplication by a permutation matrix permutes the columns
of the matrix.

However, mechanically, right
multiplication corresponds to left
matrix vector multiplication on
the rows.

AN =


a1•N
a2•N

...
am•N
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Gaussian Elimination Matrices

The key step in Gaussian elimination is to transform a vector of the form a
α
b

 ,
where a ∈ Rk , 0 6= α ∈ R, and b ∈ Rn−k−1, into one of the form a

α
0

 .

This can be accomplished by left matrix multiplication as follows.

Lecture 1: Linear Algebra Review Linear Programming 18 / 24



Gaussian Elimination Matrices

The key step in Gaussian elimination is to transform a vector of the form a
α
b

 ,
where a ∈ Rk , 0 6= α ∈ R, and b ∈ Rn−k−1, into one of the form a

α
0

 .

This can be accomplished by left matrix multiplication as follows.

Lecture 1: Linear Algebra Review Linear Programming 18 / 24



Gaussian Elimination Matrices

a ∈ Rk , 0 6= α ∈ R, and b ∈ Rn−k−1

 Ik×k 0 0
0 1 0
0 −α−1b I(n−k−1)×(n−k−1)

 a
α
b



=



a
α
0

 .
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Gaussian Elimination Matrices

The matrix  Ik×k 0 0
0 1 0
0 −α−1b I(n−k−1)×(n−k−1)


is called a Gaussian elimination matrix.

This matrix is invertible with inverse Ik×k 0 0
0 1 0
0 α−1b I(n−k−1)×(n−k−1)

 .

Note that a Gaussian elimination matrix and its inverse are both lower triangular
matrices.
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Matrix Sub-Algebras

Lower (upper) triangular matrices in Rn×n are said to form a sub-algebra of Rn×n.

A subset S of Rn×n is said to be a sub-algebra of Rn×n if

S is a subspace of Rn×n,

S is closed wrt matrix multiplication, and

if M ∈ S is invertible, then M−1 ∈ S .
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Gaussian Elimination in Practice

Transformation to echelon (upper
triangular) form.

A =

 1 1 2
2 4 2
−1 1 3

 .
Eliminate the first column with a

Gaussian elimination matrix.
G1 =

 1 0 0
−2 1 0

1 0 1



G1A =

 1 0 0
−2 1 0

1 0 1

 1 1 2
2 4 2
−1 1 3

 =



1 1 2
0 2 − 2
0 2 5
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Gaussian Elimination in Practice

Now do Gaussian eliminiation on the second column. 1 1 2
0 2 −2
0 2 5



G2 =

 1 0 0
0 1 0
0 −1 1



 1 0 0
0 1 0
0 −1 1

  1 1 2
0 2 −2
0 2 5

 =



1 1 2
0 2 − 2
0 0 7
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Gauss-Jordan Elimination, or Pivot Matrices

What happens in the following multiplication? Ik×k −α−1a 0
0 α−1 0
0 −α−1b I(n−k−1)×(n−k−1)

 a
α
b



=



0
1
0

 .
What is the inverse of this matrix? Ik×k a 0

0 α 0
0 b I(n−k−1)×(n−k−1)

 .
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