
Math 308 Review Material

Linear Systems of Equations from Your Past
Linear systems of equations arise in an enormous variety of real world applica-
tions. In addition, our ability to solve very large scale linear systems sometimes
involving millions of variables lies at the root of our understanding of the be-
havior of complex nonlinear phenomenon such as weather. Linear systems lie
behind every aspect of the operation of the computer itself, from chip design,
to screen layout, to disk space allocation. In this course we will consider a
very small number of applications of linear systems and their associated theory.
However, it is hoped that this small sampling will give you some idea of the
great variety of phenomena that can be described with the aid of this most
useful of mathematical theories. After completing Math 308, whole new vistas
of mathematical possibility will be open and available to you. This course is
the gateway to all upper division courses in mathematics, engineering, and the
sciences.

In this handout, I will briefly review a few of the instances in which you were
exposed to linear systems in your past courses. The applications are given in
a loosely chronological fashion relative to when the associated techniques are
introduced into the curriculum.

Partial Fractions Decomposition: (Math 125)

Partial fractions decomposition is a techniques of integration applied to
rational functions, that is, functions representable as the ratio of poly-
nomials. Given an integrand f(x) = N(x)/Q(x) where N and Q are
polynomials, one applies a two step procedure to pre–process f before
integration can occur:

Step 1: Use polynomial division to rewrite f as

f(x) = M(x) +
P (x)

Q(x)
,

where M and P are polynomials with the degree of P strictly less
than the degree of Q.

Step 2: Obtain a partial fractions decomposition of P (x)/Q(x).

After f is pre–processed in this way, integration can occur in a relatively
straightforward manner. The aspect of this process that we focus on
here is the so called partial fractions decomposition. Although a general
theory exists, we only consider a specific example to give the flavor of the
relationship to linear systems.

Consider the rational function

x2 − x + 2

(x2 + x + 1)(x− 2)
.
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Observe that the degree of the numerator is 2 and this is strictly less
than the degree of the denominator (which is 3). Moreover, the numera-
tor and denominator are relatively prime, that is, they have no common
zero. Finally, note that the factor (x2 + x + 1) has only complex roots
(these are 1

2 (1 + i
√

7)). In this instance, the theorem on partial fractions
decompositions states that there exist coefficients A, B, and C such that

x2 − x + 2

(x2 + x + 1)(x− 2)
=

Ax + B

(x2 + x + 1)
+

C

(x− 2)
.

In order to obtain the coefficients A, B, and C, one (a) puts the right-hand
side of this equation over the common denominator (x2+x+1)(x−2), (b)
multiplies out the numerator, and (c) equates coefficients of the powers of
x between the right– and left-hand sides of the equation. In this case, we
obtain

x2 − x + 2

(x2 + x + 1)(x− 2)
=

(A + C)x2 + (−2A + B + C)x + (−2B + C)

(x2 + x + 1)(x− 2)
.

Equating coefficients, we obtain the linear system

A + C = 1
−2A + B + C = −1

− 2B + C = 2
.

Problems: Find the partial fractions decomposition for the following
functions.

1. 2x2+2x+2
(x2+1)(x+1)

2. x2+2x−1
(x2+1)(x+1)2

Polynomial Interpolation: (Pre–Calculus and Beyond)

This example could well have been the first example since it applies to
problems that have seen in high school. However, we now take this appli-
cation to a higher level of abstraction and utility. The most elementary
instance of these types of problems is to determine the equation of the
line passing through two given points in the plane. This gives rise to the
two point formula for the equation of a line. The next most elementary
example is to determine the equation of the parabola that passes through
three given points in the plane. You have by now worked many problems
of this type. These problems are very special cases of the more general
class of problems known as polynomial interpolation problems.

Again, we consider a special case of polynomial interpolation but at a more
general level. Suppose we are given some experimental data. The inputs
to the experiment are the distinct values x0, x1, . . . , xn. Associated with
each input value xi, we measure an output value yi after the completion
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of the experiment. After running the same experiment n + 1 times we
acquire n + 1 pairs of data elements (x0, y0), (x1, y1), . . . , (xn, yn) which
can be thought of as points in the plane. We now wish to determine a
function that associates the inputs with the outputs. That is, we would
like to find a function f(x) that interpolates the experimental data, i.e.,
f(xi) = yi for i = 0, 1, . . . , n. We can then use this function to gain further
insight into the phenomenon that the experiment is attempting to model.
In polynomial interpolation with n + 1 data points, we assume that the
function f is a polynomial of degree n:

f(x) = a0 + a1x + a2x
2 + . . . + anx

n .

That is, we wish to determine the coefficients a0, a1, . . . , an so that
the resulting polynomial interpolates the data (xi, yi), i = 0, 1, . . . , n.
Specifically, the coefficients must solve the linear system

a0 + a1x0 + a2x
2
0 + . . . anx

n
0 = y0

a0 + a1x1 + a2x
2
1 + . . . anx

n
1 = y1

a0 + a1x2 + a2x
2
2 + . . . anx

n
2 = y2

...
. . .

...
a0 + a1xn + a2x

2
n + . . . anx

n
n = yn

Problems:

1. Find the quadratic polynomial that interpolates the 3 points (1, 0), (2, 3),
and (−1, 6).

2. Find the 3rd degree polynomial that interpolates the 4 points (0, 1), (1, 1), (−1, 1),
and (2, 7).
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