
CHAPTER 2

The Linear Least Squares Problem

In this chapter we study the linear least squares problem introduced in (4). Since this is such an important
topic, we only briefly touch on a few aspects of this problem. We begin by introducing a few of the applications of
the linear least squares from current research areas.

1. Applications

1.1. Polynomial Fitting. In many data fitting application one assumes a functional relationship between a
set of “inputs” and a set of “outputs”. For example, a patient is injected with a drug and the the research wishes
to understand the clearance of the drug as a function of time. One way to do this is to draw blood samples over
time and to measure the concentration of the drug in the drawn serum. The goal is to then provide a functional
description of the concentration at any point in time.

Suppose the observed data is yi 2 R for each time point ti, i = 1, 2, . . . , N , respectively. The underlying
assumption it that there is some function of time f : R ! R such that yi = f(ti), i = 1, 2, . . . , N . The goal is to
provide and estimate of the function f . One way to do this is to try to approximate f by a polynomial of a fixed
degree, say n:

p(t) = x0 + x1t+ x2t
2 + · · ·+ xnt

n
.

We now wish to determine the values of the coe�cients that “best” fit the data.
If were possible to exactly fit the data, then there would exist a value for the coe�cient, say x = (x0, x1, x2, . . . , xn)

such that

yi = x0 + x1ti + x2t
2
i + · · ·+ xnt

n
i , i = 1, 2, . . . , N.

But if N is larger than n, then it is unlikely that such an x exists; while if N is less than n, then there are probably
many choices for x for which we can achieve a perfect fit. We discuss these two scenarios and their consequences
in more depth at a future dat, but, for the moment, we assume that N is larger than n. That is, we wish to
approximate f with a low degree polynomial.

When n << N , we cannot expect to fit the data perfectly and so there will be errors. In this case, we must
come up with a notion of what it means to “best” fit the data. In the context of least squares, “best” means that
we wish to minimized the sum of the squares of the errors in the fit:

(5) minimize
x2Rn+1

1
2

NX

i=1

(x0 + x1ti + x2t
2
i + · · ·+ xnt

n
i � yi)

2
.

The leading one half in the objective is used to simplify certain computations that occur in the analysis to come.
This minimization problem has the form

minimize
x2Rn+1

1
2 kV x� yk22 ,
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since

V x =

0

BBB@

x0 + x1t1 + x2t
2
1 + · · ·+ xnt

n
1

x0 + x1t2 + x2t
2
2 + · · ·+ xnt

n
2

...
x0 + x1tN + x2t

2
N + · · ·+ xnt

n
N

1

CCCA
.

That is, the polynomial fitting problem (5) is an example of a linear least squares problem (4). The matrix V is
called the Vandermonde matrix associated with this problem.

This is neat way to approximate functions. However, polynomials are a very poor way to approximate the
clearance data discussed in our motivation to this approach. The concentration of a drug in serum typically rises
quickly after injection to a maximum concentration and falls o↵ gradually decaying exponentially. There is only
one place where such a function is zero, and this occurs at time zero. On the other hand, a polynomial of degree
n has n zeros (counting multiplicity). Therefore, it would seem that exponential functions would provide a better
basis for estimating clearance. This motivates our next application.

1.2. Function Approximation by Bases Functions. In this application we expand on the basic ideas
behind polynomial fitting to allow other kinds of approximations, such as approximation by sums of exponential
functions. In general, suppose we are given data points (zi, yi) 2 R2

, i = 1, 2, . . . , N where it is assumed that the
observation yi is a function of an unknown function f : R ! R evaluated at the point zi for each i = 1, 2, . . . , N .
Based on other aspects of the underlying setting from which this data arises may lead us to believe that f comes
from a certain space F of functions, such as the space of continuous or di↵erentiable functions on an interval. This
space of functions may itself be a vector space in the sense that the zero function is in the space (0 2 F), two
function in the space can be added pointwise to obtain another function in the space ( F is closed with respect
to addition), and any real multiple of a function is the space is also in the space (F is closed with respect to
scalar multiplication). In this case, we may select from X a finite subset of functions, say �1,�2, . . . ,�k, and try to
approximate f as a linear combination of these functions:

f(x) ⇠ x1�1(z) + x2�2(z) + · · ·+ xn�k(z).

This is exactly what we did in the polynomial fitting application discussed above. There �i(z) = z
i but we

started the indexing at i = 0. Therefore, this idea is essentially the same as the polynomial fitting case. But
the functions z

i have an additional properties. First, they are linearly independent in the sense that the only
linear combination that yields the zero function is the one where all of the coe�cients are zero. In addition, any
continuous function on and interval can be approximated “arbitrarily well” by a polynomial assuming that we
allow the polynomials to be of arbitrarily high degree (think Taylor approximations). In this sense, polynomials
form a basis for the continuous function on and interval. By analogy, we would like our functions �i to be linearly
independent and to come from basis of functions. There are many possible choices of bases, but a discussion of
these would take us too far afield from this course.

Let now suppose that the functions �1,�2, . . . ,�k are linearly independent and arise from a set of basis function
that reflect a deeper intuition about the behavior of the function f , e.g. it is well approximated as a sum of
exponentials (or trig functions). Then the task to to find those coe�cient x1, x2, . . . , xn that best fits the data in
the least squares sense:

minimize
x2Rn

1
2

NX

i=1

(x1�1(zi) + x2�2(zi) + · · ·+ xn�k(zi)� yi)
2
.

This can be recast as the linear least squares problem

minimize
x2Rn

1
2 kAx� yk22 ,

where
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3

7775
.

May possible further generalizations of this basic idea are possible. For example, the data may be multi-
dimensional: (zi, yi) 2 Rs⇥Rt. In addition, constraints may be added, e.g., the function must be monotone (either
increasing of decreasing), it must be unimodal (one “bump”), etc. But the essential features are that we estimate
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using linear combinations and errors are measured using sums of squares. In many cases, the sum of squares error
metric is not a good choice. But is can be motivated by assuming that the error are distributed using the Gaussian,
or normal, distribution.

1.3. Linear Regression and Maximum Likelihood. Suppose we are considering a new drug therapy for
reducing inflammation in a targeted population, and we have a relatively precise way of measuring inflammation for
each member of this population. We are trying to determine the dosing to achieve a target level of inflamation. Of
course, the dose needs to be adjusted for each individual due to the great amount of variability from one individual
to the next. One way to model this is to assume that the resultant level of inflamation is on average a linear function
of the dose and other individual specific covariates such as sex, age, weight, body surface area, gender, race, blood
iron levels, desease state, etc. We then sample a collection of N individuals from the target population, registar
their dose zi0 and the values of their individual specific covariates zi1, zi2, . . . , zin, i = 1, 2, . . . , N . After dosing we
observe that the resultant inflammation for the ith subject to be yi, i = 1, 2, . . . , N . By saying that the “resultant
level of inflamation is on average a linear function of the dose and other individual specific covariates ”, we mean
that there exist coe�cients x0, x1, x2, . . . , xn such that

yi = x0zi0 + x1zi1 + x2zi2 + · · ·+ xnzin + vi,

where vi is an instance of a random variable representing the individuals deviation from the linear model. Assume
that the random variables vi are independently identically distributed N(0,�2) (norm with zero mean and variance
�
2). The probability density function for the the normal distribution N(0,�2) is

1

�
p
2⇡

EXP[�v
2
/(2�2)] .

Given values for the coe�cients xi, the likelihood function for the sample yi, i = 1, 2, . . . , N is the joint probability
density function evaluated at this observation. The independence assumption tells us that this joint pdf is given by

L(x; y) =

✓
1

�
p
2⇡

◆n

EXP

"
� 1

2�2

NX

i=1

(x0zi0 + x1zi1 + x2zi2 + · · ·+ xnzin � yi)
2

#
.

We now wish to choose those values of the coe�cients x0, x2, . . . , xn that make the observation y1, y2, . . . , yn most
probable. One way to try to do this is to maximize the likelihood function L(x; y) over all possible values of x. This
is called maximum likelihood estimation:

(6) maximize
x2Rn+1

L(x; y) .

Since the natural logarithm is nondecreasing on the range of the likelihood function, the problem (6) is equivalent
to the problem

maximize
x2Rn+1

ln(L(x; y)) ,

which in turn is equivalent to the minimization problem

(7) minimize
x2Rn+1

� ln(L(x; y)) .

Finally, observe that

� ln(L(x; y)) = K +
1

2�2

NX

i=1

(x0zi0 + x1zi1 + x2zi2 + · · ·+ xnzin � yi)
2
,

where K = n ln(�
p
2⇡) is constant. Hence the problem (7) is equivalent to the linear least squares problem

minimize
x2Rn+1

1
2 kAx� yk22 ,

where

y =

0

BBB@

y1

y2
...
yN

1

CCCA
, x =

0

BBBBB@

x0

x1

x2
...
xn

1

CCCCCA
and A =

2

6664

z10 z11 z12 . . . z1n

z20 z21 z22 . . . z2n
...

zN0 zN1 zN2 . . . zNn

3

7775
.



10 2. THE LINEAR LEAST SQUARES PROBLEM

This is the first step in trying to select an optimal dose for each individual across a target population. What is
missing from this analysis is some estimation of the variability in inflammation response due to changes in the
covariates. Understanding this sensitivity to variations in the covariates is an essential part of any regression
analysis. However, a discussion of this step lies beyond the scope of this brief introduction to linear regression.

1.4. System Identification in Signal Processing. We consider a standard problem in signal processing
concerning the behavior of a stable, causal, linear, continuous-time, time-invariant system with input signal u(t)
and output signal y(t). Assume that these signals can be described by the convolution integral

(8) y(t) = (g ⇤ u)(t) :=
Z +1

0
g(⌧)u(t� ⌧)d⌧ .

In applications, the goal is to obtain an estimate of g by observing outputs y from a variety of known input signals u.
For example, returning to our drug dosing example, the function u may represent the input of a drug into the body
through a drug pump any y represent the concentration of the drug in the body at any time t. The relationship
between the two is clearly causal (and can be shown to be stable). The transfer function g represents what the
body is doing to the drug. In the way, the model (8) is a common model used in pharmaco-kinetics.

The problem of estimating g in (8) is an infinite dimensional problem. Below we describe a way to approximate
g using the the FIR, or finite impulse response filter. In this model we discretize time by choosing a fixed number
N of time points ti to observe y from a known input u, and a finite time horizon n < N over which to approximate
the integral in (8). To simplify matters we index time on the integers, that is, we equate ti with the integer i. After
selecting the data points and the time horizon, we obtain the FIR model

(9) y(t) =
nX

k=1

g(k)u(t� k),

where we try to find the “best” values for g(k), k = 0, 1, 2, . . . , n to fit the system

y(t) =
nX

k=0

g(k)u(t� k), t = 1, 2, . . . , N.

Notice that this requires knowledge of the values u(t � k) for t = t = 1, 2, . . . , N and k = 0, 1, . . . , n. One often
assumes a observational error in this model that is N(0,�2) for a given value of �2. In this case, the FIR model (9)
becomes

(10) y(t) =
nX

i=1

g(k)u(t� k) + v(t),

where v(t), t = 1, . . . , N are iid N(0,�2). In this case, the corresponding maximum likelihood estimation problem
becomes the linear least squares problem

minimize
g2Rn+1

1
2 kHg � yk22 ,

where

y =

0
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y(1)
y(2)
...

y(N)

1
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, g =

0
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g(1)
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g(n)

1
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and H =

2
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u(1) u(0) u(�1) u(�2) . . . u(1� n)
u(2) u(1) u(0) u(�1) . . . u(2� n)
u(3) u(2) u(1) u(0) . . . u(3� n)
...

u(N) u(N � 1) u(N � 2) u(N � 3) . . . u(N � n)

3

777775
.

Notice that the matrix H has constant “diagonals”. Such matrices are called Toeplitz matrices.

1.5. Kalman Smoothing. Kalman smoothing is a fundamental topic in signal processing and control litera-
ture, with numerous applications in navigation, tracking, healthcare, finance, and weather. Contributions to theory
and algorithms related to Kalman smoothing, and to dynamic system inference in general, have come from statis-
tics, engineering, numerical analysis, and optimization. Here, the term ‘Kalman smoother’ includes any method of
inference on any dynamical system fitting the graphical representation of Figure 1.
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Figure 1. Dynamic systems amenable to Kalman smoothing methods.

The combined mathematical, statistical, and probablistic model corresponding to Figure 1 is specified as follows:

(11)
x1 = g1(x0) +w1,

xk = gk(xk�1) +wk k = 2, . . . , N,

zk = hk(xk) + vk k = 1, . . . , N ,

where wk, vk are mutually independent random variables with known positive definite covariance matrices Qk and
Rk, respectively. The vectors {xk} are called the state sequence and the vectors {zk} the observation sequence. Here,
wk often, but not always, arises from a probabilistic model (discretization of an underlying stochastic di↵erential
equation in the state x, from which the names ‘smoother’ is derived) and vk comes from a statistical model for
observations. We have xk,wk 2 Rn, and zk,vk 2 Rm(k) , so dimensions can vary between time points. The
functions gk and hk as well as the matrices Qk and Rk are known and given. In addition, the observation sequence
{zk} is also known. The goal is to estimate the unobserved state sequence {xk}. For example, in our drug dosing,
the amount of the drug remaining in the body at time t is the unknown state sequence while the observation
sequence is the observed concentration of the drug in each of our blood draws.

The classic case is obtained by making the following assumptions:

(1) x0 is known, and gk, hk are known linear functions, which we denote by

(12) gk(xk�1) = Gkxk�1 hk(xk) = Hkxk

where Gk 2 Rn⇥n and Hk 2 Rm(k)⇥n,
(2) wk, vk are mutually independent Gaussian random variables.

In the classical setting, the connection to the linear least squares problem is obtained by formulating the maximum a
posteriori (MAP) problem under linear and Gaussian assumptions. As in the linear regression and signal processing
applications, this yields the following linear least squares problem:

(13) min
{xk}

f({xk}) :=
NX

k=1

1

2
(zk �Hkxk)

T
R

�1
k (zk �Hkxk) +

1

2
(xk �Gkxk�1)

T
Q

�1
k (xk �Gkxk�1) .

To simplify this expression, we introduce data structures that capture the entire state sequence, measurement
sequence, covariance matrices, and initial conditions. Given a sequence of column vectors {uk} and matrices {Tk}
we use the notation

vec({uk}) =

2

6664

u1

u2
...

uN

3

7775
, diag({Tk}) =

2

66664

T1 0 · · · 0

0 T2
. . .

...
...

. . .
. . . 0
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3
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We now make the following definitions:

(14)

R = diag({Rk})
Q = diag({Qk})
H = diag({Hk})

x = vec({xk})
w = vec({g0, 0, . . . , 0})
z = vec({z1, z2, . . . , zN})

G =

2

66664

I 0

�G2 I
. . .

. . .
. . . 0

�GN I

3

77775
,

where g0 := g1(x0) = G1x0. With definitions in (14), problem (13) can be written

(15) min
x

f(x) =
1

2
kHx� zk2R�1 +

1

2
kGx� wk2Q�1 ,

where kak2M = a
>
Ma.

Since the number of time steps N can be quite large, it is essential that the underlying tri-diagonal structure
is exploited in any solution procedure. This is especially true when the state-space dimension n is also large which
occurs when making PET scan movies of brain metabolics or reconstructing weather patterns on a global scale.

2. Optimality in the Linear Least Squares Problem

We now turn to a discussion of optimality in the least squares problem (4) which we restate here for ease of
reference:

(16) minimize
x2Rn

1
2 kAx� bk22 ,

where
A 2 Rm⇥n

, b 2 Rm
, and kyk22 := y

2
1 + y

2
2 + · · ·+ y

2
m .

In particular, we will address the question of when a solution to this problem exists and how they can be identified
or characterized.

Suppose that x is a solution to (16), i.e.,

(17) kAx� bk2  kAx� bk2 8 x 2 Rn
.

Using this inequality, we derive necessary and su�cient conditions for the optimality of x. A useful identity for our
derivation is

(18) ku+ vk22 = (u+ v)T (u+ v) = u
T
u+ 2uT

v + v
T
v = kuk22 + 2uT

v + kvk22 .
Let x be any other vector in Rn. Then, using (18) with u = A(x� x) and v = Ax� b we obtain

(19)

kAx� bk22 = kA(x� x) + (Ax� b)k22
= kA(x� x)k22 + 2(A(x� x))T (Ax� b) + kAx� bk22
� kA(x� x)k22 + 2(A(x� x))T (Ax� b) + kAx� bk22 (by (17)).

Therefore, by canceling kAx� bk22 from both sides, we know that, for all x 2 Rn,

0 � kA(x� x)k22 + 2(A(x� x))T (Ax� b) = 2(A(x� x))T (Ax� b)� kA(x� x)k22 .
By setting x = x� tw for t 2 T and w 2 Rn, we find that

t
2

2
kAwk22 � tw

T
A

T (Ax� b) 8 t 2 R and w 2 Rn
.

Dividing by t 6= 0, we find that

t

2
kAwk22 � w

T
A

T (Ax� b) 8 t 2 R \ {0} and w 2 Rn
,

Sending t to zero gives
0 � w

T
A

T (Ax� b) 8 w 2 Rn
,

which implies that AT (Ax� b) = 0 (why?), or equivalently,

(20) A
T
Ax = A

T
b.

The system of equations (20) is called the normal equations associated with the linear least squares problem (16).
This derivation leads to the following theorem.
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Theorem 2.1. [Linear Least Squares and the Normal Equations]
The vector x solves the problem (16), i.e.,

kAx� bk2  kAx� bk2 8 x 2 Rn
,

if and only if AT
Ax = A

T
b.

Proof. We have just shown that if x is a solution to (16), then the normal equations are satisfied, so we need
only establish the reverse implication. Assume that AT

Ax = A
T
b or, equivalently, AT (Ax � b) = 0. Then, for all

x 2 Rn,

kAx� bk22 = k(Ax�Ax) + (Ax� b)k22
= kA(x� x)k22 + 2(A(x� x))T (Ax� b) + kAx� bk22 (by (18))

� 2(x� x)TAT (Ax� b) + kAx� bk22 (since kA(x� x)k22 � 0)

= kAx� bk22 (since A
T (Ax� b) = 0),

or equivalently, x solves (16). ⇤
This theorem provides a nice characterization of solutions to (16), but it does not tell us if a solution exits. For

this we use the following elementary result from linear algebra.

Lemma 2.1. For every matrix A 2 Rm⇥n we have

Null(AT
A) = Null(A) and Ran(AT

A) = Ran(AT ) .

Proof. Note that if x 2 Null(A), then Ax = 0 and so A
T
Ax = 0, that is, x 2 Null(AT

A). Therefore,
Null(A) ⇢ Null(AT

A). Conversely, if x 2 Null(AT
A), then

A
T
Ax = 0 =) x

T
A

T
Ax = 0 =) (Ax)T (Ax) = 0 =) kAxk22 = 0 =) Ax = 0,

or equivalently, x 2 Null(A). Therefore, Null(AT
A) ⇢ Null(A), and so Null(AT

A) = Null(A).
Since Null(AT

A) = Null(A), the Fundamental Theorem of the Alternative tells us that

Ran(AT
A) = Ran((AT

A)T ) = Null(AT
A)? = Null(A)? = Ran(AT ),

which proves the lemma. ⇤
This lemma immediately gives us the following existence result.

Theorem 2.2. [Existence and Uniqueness for the Linear Least Squares Problem]
Consider the linear least squares problem (16).

(1) A solution to the normal equations (20) always exists.
(2) A solution to the linear least squares problem (16) always exists.
(3) The linear least squares problem (16) has a unique solution if and only if Null(A) = {0} in which case

(AT
A)�1 exists and the unique solution is given by x = (AT

A)�1
A

T
b.

(4) If Ran(A) = Rm, then (AA
T )�1 exists and x = A

T (AA
T )�1

b solves (16), indeed, Ax = b.

Proof. (1) Lemma 2.1 tells us that Ran(AT
A) = Ran(AT ); hence, a solution to A

T
Ax = A

T
b must exist.

(2) This follows from Part (1) and Theorem 2.1.
(3) By Theorem 2.1, x solves the linear least squares problem if and only if x solves the normal equations. Hence, the
linear least squares problem has a uniques solution if and only if the normal equations have a unique solution. Since
A

T
A 2 Rn⇥n is a square matrix, this is equivalent to saying that AT

A is invertible, or equivalently, Null(AT
A) =

{0}. However, by Lemma 2.1, Null(A) = Null(AT
A). Therefore, the linear least squares problem has a uniques

solution if and only if Null(A) = {0} in which case A
T
A is invertible and the unique solution is given by x =

(AT
A)�1

A
T
b.

(4) By the hypotheses, Lemma 2.1, and the Fundamental Theorem of the Alternative, {0} = (Rm)? = (Ran(A))? =
Null(AT ) = Null(AA

T ); hence, AA
T 2 Rm⇥m is invertible. Consequently, x = A

T (AA
T )�1

b is well-defined and
satisfies Ax = b ⇤

Theorem 2.2 establishes the existence of solutions to the linear least squares problem as well as necessary
conditions for optimality and uniqueness. When the solution is unique, it also provides a formula for this solution.
However, these results do not provide a numerical mechanism for computing a solution even in the case when the
solution is unique. Here the dimension of the problem, or the problem size, plays a key role. In addition, the
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level of accuracy in the solution as well as the greatest accuracy possible are also issues of concern. Linear least
squares problems range in size from just a few variables and equations to millions. Some are so large that all of
the computing resources at our disposal today are insu�cient to solve them, and in many cases the matrix A is
not even available in the sense that it is not stored on a computer. However, in this latter case, it is often possible
to either compute or approximate the vector Ax for a given vector x. Therefore, great care and inventiveness is
required in the numerical solution of these problems. Research into how to solve this class of problems remains an
important area of research to this day.

In our study of numerical solution techniques we present a few classical methods. But before doing so, we study
other aspects of the problem in order to gain further insight into its geometric structure.

3. Orthogonal Projection onto a Subspace

In this section we view the linear least squares problem from the perspective of a least distance problem to a
subspace, or equivalently, as the problem of projecting onto a subspace. Suppose S ⇢ Rm is a given subspace and
b 62 S. The least distance problem for S and b is to find that element of S that is as close to b as possible. That is
we wish to solve the problem

(21) min
z2S

1
2 kz � yk22 ,

or equivalently, we wish to find the point z 2 S such that

kz � bk2  kz � bk2 8 z 2 S.

If we take the subspace to be the range of A, S = Ran(A), then the problem (21) is closely related to the problem
(16) since

(22) z 2 Rm solves (21) if and only if there is an x 2 Rn with z = Ax such that x solves (16). (why?)

Below we discuss this connection and its relationship to the notion of an orthogonal projection onto a subspace.
A matrix P 2 Rm⇥m is said to be a projection if and only if P 2 = P . In this case we say that P is a projection

onto the subspace S = Ran(P ), the range of P . Note that if x 2 Ran(P ), then there is a w 2 Rm such that x = Pw,
therefore, Px = P (Pw) = P

2
w = Pw = x. That is, P leaves all elements of Ran(P ) fixed. Also, note that, if P is

a projection, then
(I � P )2 = I � P � P + P

2 = I � P,

and so (I � P ) is also a projection. Since for all w 2 Rm,

w = Pw + (I � P )w,

we have
Rm = Ran(P ) + Ran(I � P ).

In this case we say that the subspaces Ran(P ) and Ran(I � P ) are complementary subspaces since their sum is the
whole space and their intersection is the origin, i.e., Ran(P ) \ Ran(I � P ) = {0} (why?).

Conversely, given any two subspaces S1 and S2 that are complementary, that is, S1\S2 = {0} and S1+S2 = Rm,
there is a projection P such that S1 = Ran(P ) and S2 = Ran(I � P ). We do not show how to construct these
projections here, but simply note that they can be constructed with the aid of bases for S1 and S2.

The relationship between projections and complementary subspaces allows us to define a notion of orthogonal
projection. Recall that for every subspace S ⇢ Rm, the subspace orthogonal to S is given by

S
? :=

�
x
��xT

y = 0 8 y 2 S
 
.

We say that S and S
? are orthogal subspaces. Clearly, S and S

? are complementary:

S \ S
? = {0} and S + S

? = Rm
. (why?)

Therefore, there is a projection P such that Ran(P ) = S and Ran(I � P ) = S
?, or equivalently,

(23) ((I � P )y)T (Pw) = 0 8 y, w 2 Rm
.

The orthogonal projection plays a very special role among all possible projections onto a subspace. For this reason,
we denote the orthogonal projection onto the subspace S by PS.

We now use the condition (23) to derive a simple test of whether a linear transformation is an orthogonal
projection. For brevity, we write P := PS and set M = (I � P )TP . Then, by (23),

0 = e
T
i Mej = Mij 8 i, j = 1, . . . , n,
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i.e., M is the zero matrix. But then, since 0 = (I � P )TP = P � P
T
P , we have

P = P
T
P = (PT

P )T = P
T
.

Conversely, if P = P
T and P

2 = P , then (I � P )TP = 0. Therefore, a matrix P is an orthogonal projection if and
only if P 2 = P and P = P

T .
An orthogonal projection for a given subspace S can be constructed from any orthonormal basis for that

subspace. Indeed, if the columns of the matrix Q form an orthonormal basis for S, then the matrix P = QQ
T

satisfies

P
2 = QQ

T
QQ

T why?
= QIkQ

T = QQ
T = P and P

T = (QQ
T )T = QQ

T = P,

where k = dim(S), and so P is the orthogonal projection onto S since, by construction, Ran(QQ
T ) = Ran(Q) = S.

We catalogue these observations in the following lemma.

Lemma 3.1. [Orthogonal Projections]

(1) The matrix P 2 Rn⇥n is an orthogonal projection if and only if P = P
2 and P = P

T .
(2) If the columns of the matrix Q 2 Rn⇥k form an orthonormal basis for the subspace S ⇢ Rn, then P := QQ

T

is the orthogonal projection onto S.

Let us now apply these projection ideas to the problem (21). Let P := PS be the orthogonal projection onto
the subspace S, and let z = Pb. Then, for every z 2 S,

kz � bk22 = kPz � Pb� (I � P )bk22 (since z 2 S)

= kP (z � b) + (I � P )bk22
= kP (z � b)k22 + 2(z � b)TPT (I � P )b+ k(I � P )bk22
= kP (z � b)k22 + k(I � P )bk22 (since P = P

T and P = P
2)

� k(P � I)bk22 (since kP (z � b)k22 >� 0)

= kz � bk22 .

Consequently, kz � bk2  kz � bk2 for all z 2 S, that is, z = Pb solves (21). This observation yield the following
theorem as an elementary consequence of the parallelogram law:

2 kuk22 + 2 kvk22 = ku+ vk22 + ku� vk22 8u, v 2 Rn
.

Theorem 3.1. [Subspace Projection Theorem]
Let S ⇢ Rm be a subspace and let b 2 Rm \ S. Then the unique solution to the least distance problem

minimize
z2S

kz � bk2

is z := PSb, where PS is the orthogonal projector onto S.

Proof. Everything but the uniqueness of the solution has been established in the discussion preceeding the
theorem. To show uniqueness, apply the parallelogram law to obtain

k(1� t)u+ tvk22 = (1� t) kuk22 + t kvk22 � t(1� t) ku� vk22 8 0  t  1 and u, v 2 Rm
.

Let z
1
, z

2 2 Rm be two points that solve the minimum distance problem. Then,
��z1 � b

��
2
=
��z2 � b

��
2
=: ⌘ > 0,

and so by the identity given above,
�� 1
2 (z

1 + z
2)� b

��2
2

=
�� 1
2 (z

1 � b) + 1
2 (z

2 � b)
��2
2

= 1
2

��z1 � b
��2
2
+ 1

2

��z2 � b
��2
2
� 1

4

��z1 � z
2
��2
2

= ⌘
2 � 1

4

��z1 � z
2
��2
2
.

Since ⌘ = inf {kz � bk2 | z 2 S }, we must have z
1 = z

2. ⇤

Let us now reconsider the linear least-squares problem (16) as it relates to our new found knowledge about
orthogonal projections and their relationship to least distance problems for subspaces. Consider the case where
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m >> n and Null(A) = {0}. In this case, Theorem 2.2 tells us that x = (AT
A)�1

A
T
b solves (16), and z = PSb

solves (23) where PS is the orthogonal projector onto S = Ran(A). Hence, by (22),

PSb = z = Ax = A(AT
A)�1

A
T
b.

Since this is true for all possible choices of the vector b, we have

(24) PS = PRan(A) = A(AT
A)�1

A
T !

That is, the matrix A(AT
A)�1

A
T is the orthogonal projector onto the range of A. One can also check this directly

by showing that the matrix M = A(AT
A)�1

A
T satisfies M2 = M , MT = M , and Ran(M) = Ran(A).

Proposition 3.1. Let A 2 Rm⇥n with m  n and Null(A) = {0}. Then

PRan(A) = A(AT
A)�1

A
T
.

4. Minimal Norm Solutions to Ax = b

Again let A 2 Rm⇥n, but now we suppose that m << n. In this case A is short and fat so the matrix A most
likely has rank m, or equivalently,

(25) Ran(A) = Rm
.

But regardless of the range of A and the choice of the vector b 2 Rm, the set of solutions to Ax = b will be infinite
if a solution exists since the nullity of A is n�m. Indeed, if x0 is any particular solution to Ax = b, then the set of
solutions is given by x

0 + Null(A) :=
�
x
0 + z

�� z 2 Null(A)
 
. In this setting, one might prefer the solution to the

system having least norm. This solution is found by solving the problem

(26) min
z2Null(A)

1
2

��z + x
0
��2
2
.

This problem is of the form (21). Consequently, the solution is given by z = �PSx
0 where PS is the orthogonal

projection onto S := Null(A). In particular, this implies that the least norm solution to the system Ax = b is
uniquely given by the orthogonal projection of x0 onto the range of AT since S

? = Null(A)? = Ran
�
A

T
�
and

(27) x
0 + z = x

0 � PNull(A)x
0 = (I � PNull(A))x

0 = PNull(A)?x
0 = P

Ran
⇣
A

T
⌘x

0
.

Recall that the formula (24) shows that if M 2 Rk⇥s is such that Null(M) = {0}, then the orthogonal projector
onto Ran(M) is given by

(28) PRan(M) = M(MT
M)�1

M
T
.

In our case, M = A
T and M

T
M = AA

T . Thus, if we assume that (25) holds, then

Null(M) = Null(AT ) = Ran(A)? = (Rm)? = {0}
and consequently, by (28), the orthogonal projector onto Ran(AT ) is given by

PRan(AT ) = A
T (AA

T )�1
A .

Therefore, when (25) holds, the least norm solution to Ax = b is uniquely given by

x = A
T (AA

T )�1
Ax

0
,

where x
0 is any particular solution to Ax = b. These observations establish the following theorem.

Theorem 4.1. [Least Norm Solution to Linear Systems] Let A 2 Rm⇥n, b 2 Rm and let x0 be any solution to
the system Ax = b. Then the least norm solution to the system Ax = b is given by the orthogonal projection of x0

onto the range of AT . If it is further assumed that Ran(A) = Rm, then the following hold.

(1) The matrix AA
T is invertible.

(2) The orthogonal projection onto Ran
�
A

T
�
and Null(A) are given by

P
Ran

⇣
A

T
⌘ = A

T (AA
T )�1

A and PNull(A) = I �A
T (AA

T )�1
A .

(3) For every b 2 Rm, the system Ax = b is consistent, and the least norm solution to this system is uniquely
given by

x = A
T (AA

T )�1
Ax

0
,

where x
0 is any particular solution to the system Ax = b.
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5. Gram-Schmidt Orthogonalization, the QR Factorization, and Solving the Normal Equations

5.1. Gram-Schmidt Orthogonalization. In the previous sections we learned the significance of orthogonal
projections for the linear least squares problem. In addition, we found that if the columns of the matrix U form an
orthonormal basis for the subspace S, then the matrix UU

T is the orthogonal projection onto S. Hence, one way
to obtain an orthogonal projection onto a subspace S is to compute an orthogonal basis for S. This is precisely
what the Gram-Schmidt orthogonalization process does.

Let us recall the Gram-Schmidt orthogonalization process for a sequence of linearly independent vectors
a1, . . . , an 2 Rm (note that this implies that n  m (why?)). In this process we define vectors q1, . . . , qn inductively,
as follows: set

p1 = a1, q1 = p1/kp1k,

pj = aj �
j�1X

i=1

haj , qji qi and qj = pj/kpjk for 2  j  n.

For 1  j  n, qj 2 Span{a1, . . . , aj}, so pj 6= 0 by the linear independence of a1, . . . , aj . An elementary induction
argument shows that the qj ’s form an orthonormal basis for span (a1, . . . , an).

If we now define

rjj = kpjk 6= 0 and rij = hqi, aji for 1  i < j  n,

then

a1 = r11 q1,

a2 = r12 q1 + r22 q2,

a3 = r13 q1 + r23 q2 + r33 q3,

...

an =
nX

i=1

rin qi.

Set

A := [a1 a2 . . . an] 2 Rm⇥n
, R := [rij ] 2 Rn⇥n

, and Q := [q1 q2 . . . qn] 2 Rm⇥n
,

where rij = 0, i > j. Then

A = QR ,

where Q is unitary and R is an upper triangular n⇥n matrix. In addition, R is invertible since the diagonal entries
rjj are non-zero. This is called the QR factorization of the matrix A.

Remark 5.1. If the aj’s for j = 1, . . . , n are linearly dependent, then, for at least one value of j,

aj 2 Span{a1, . . . , aj�1}, and so pj = 0.

The process can be modified by setting rjj = 0, not defining a new qj for this iteration, but continuing to define
rij = haj , qii for 1  i < j, and proceeding. We still obtain with orthogonormal vectors {q1, q2, . . . , qk}, but now
k < n. In general, after n iterations, there will be 1  k  n vectors {q1, . . . , qk} that form an orthonormal basis
for Span{a1, . . . , an}, where n � k is the number of diagonal entries rjj that take the value zero. Again we obtain
A = QR, but now Q may not be square and the matrix R may have zero diagonal entries in which case it is not
invertible.

Remark 5.2. The classical Gram-Schmidt algorithm as described above can have poor computational behavior
due to the accumulation of round-o↵ error. In particular, the computed vectors qj’s are not orthogonal: hqj , qki is
small for j 6= k with j near k, but not so small for j ⌧ k or j � k.

An alternate version, “Modified Gram-Schmidt,” is equivalent in exact arithmetic, but behaves better numeri-
cally. In the following “pseudo-codes,” p denotes a temporary storage vector used to accumulate the sums defining
the pj’s.



18 2. THE LINEAR LEAST SQUARES PROBLEM

Classic Gram-Schmidt Modified Gram-Schmidt
For j = 1, · · · , n do For j = 1, . . . , n do��� p := aj

��� p := aj��� For i = 1, . . . , j � 1 do

��� For i = 1, . . . , j � 1 do���
��� rij = haj , qii

���
��� rij = hp, qii���

j
p := p� rijqi

���
j

p := p� rijqi��� rjj := kpk
��� rjj = kpk

j
qj := p/rjj

j
qj := p/rjj

The only di↵erence is in the computation of rij: in Modified Gram-Schmidt, we orthogonalize the accumulated
partial sum for pj against each qi successively.

Theorem 5.1. [The Full QR Factorization] Suppose A 2 Rm⇥n with m � n. Then there exists a permutation
matrix P 2 Rn⇥n, a unitary matrix Q 2 Rm⇥m, and an upper triangular matrix R 2 Rm⇥n such that AP = QR.

Let Q1 2 Rm⇥n denote the first n columns of Q, Q2 the remaining (m� n) columns of Q, and R1 2 Rn⇥n the first
n rows of R, then

(29) AP = QR = [Q1 Q2]


R1

0

�
= Q1R1.

Moreover, we have the following:

(a) We may choose R to have nonnegative diagonal entries.
(b) If A is of full rank, then we can choose R with positive diagonal entries, in which case we obtain the

condensed factorization A = Q1R1, where R1 2 Rn⇥n invertible and the columns of Q1 forming an
orthonormal basis for the range of A.

(c) If rank (A) = k < n, then

R1 =


R11 R12

0 0

�
,

where R11 is a k ⇥ k invertible upper triangular matrix and R12 2 Rk⇥(n�k). In particular, this implies
that AP = Q11[R11 R12], where Q11 are the first k columns of Q. In this case, the columns of Q11 form
an orthonormal basis for the range of A.

Remark 5.3. We call the factorization AP = Q11[R11 R12] in Part (c) above the condensed QR Factorization.
Note that if P is a permutation matrix, then so is PT with P

�1 = P
T (i.e. permutation matrices are unitary). The

role of the permutation matrix is to make the first k = rank (A) columns of AP linearly independent.
To distinguish the condensed QR Factorization from the factorization in (29) with Q an m⇥m unitary matrix,

we will refer the factorization where Q is unitary as the full QR factorization.

Proof. If necessary, permute the columns of A so that the first k = rank (A) columns of A are linearly
independent and let P denote the permutation matrix that accomplishes this task so the the first k columns of AP
are linearly independent. Apply the Gram-Schmidt orthogonalization process to obtain the matrix

Q1 = [q1, . . . , qk] 2 Rm⇥k and the upper triangular matrix eR11 = [rij ] 2 Rk⇥k

so that Q1R1 gives the first k columns of A. The write the remaining columns of A as linear combinations of
the columns of Q1 to obtain the coe�cient matrix R12 2 Rk⇥(n�k) yielding AP = Q1[R11 R12]. Finally, extend
{q1, . . . , qk} to an orthonormal basis {q1, . . . , qm} of Rm, and set

Q = [q1, . . . , qm] and R =


R1

0

�
2 Rm⇥n

, so AP = QR.

As rjj > 0 in the Gram-Schmidt process, we have (b). ⇤

Remark 5.4. There are more e�cient and better computationally behaved ways of calculating the Q and R

factors. The idea is to create zeros below the diagonal (successively in columns 1, 2, . . .) as in Gaussian Elimination,
except instead of doing this by successive left multiplication by Gaussian elimination matrices, we left multiply by
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unitary matrices. Below, we show how this can be done with Householder transformations. But another popular
approach is to use Givens rotations.

In practice, every A 2 Rm⇥n has a QR-factorization, even when m < n. This follows immediately from Part
(c) Theorem 5.1.

Corollary 5.1.1. [The General Condensed QR Factorization] Let A 2 Rm⇥n have rank k  min{m,n}. Then
there exist

Q 2 Rm⇥k with orthonormal columns,

R 2 Rk⇥n full rank upper triangular, and

P 2 Rn⇥n a permutation matrix

such that

AP = QR.

In particular, the columns of the matrix Q form a basis for the range of A. Moreover, the matrix R can be written
in the form

R = [R1 R2],

where R1 2 Rk⇥k is nonsingular.

Remark 5.5. The permutation P in the corollary above can be taken to be any permutation that re-orders the
columns of A so that the first k columns of A are linearly independent, where k is the rank of A (similarly for eP in
permuting the columns of AT ).

Corollary 5.1.2. [Orthogonal Projections onto the Four Fundamental Subspaces] Let A 2 Rm⇥n have rank
k  min{m,n}. Let A and A

T have generalized QR factorizations

AP = Q[R1 R2] and A
T eP = eQ[ eR1

eR2].

Since row rank equals column rank, P 2 Rn⇥n is a permutation matrix, eP 2 Rm⇥m is a permutation matrix,
Q 2 Rm⇥k and eQ 2 Rn⇥k have orthonormal columns, R1,

eR1 2 Rk⇥k are both upper triangular nonsingular
matrices, R2 2 Rk⇥(n�k), and eR2 2 Rk⇥(m�k). Moreover,

QQ
T is the orthogonal projection onto Ran(A),

I �QQ
T is the orthogonal projection onto Null(AT ),

eQ eQT is the orthogonal projection onto Ran(AT ), and

I � eQ eQT is the orthogonal projection onto Null(A)?.

Proof. The result follows immediately from Corollary 5.1.1 and the Fundamental Theorem of the Alternative.
⇤

Exercise 5.1. Verify the representations of the orthogonal projections onto Ran(A) and Null(A) given in
Corollary 5.1.2 correspond to those given in Proposition 3.1 and Theorem 4.1.

5.2. Solving the Normal Equations with the QR Factorization. Let’s now reconsider the linear least
squares problem (16) and how the QR factorization can be used in its solution. Specifically, we examine how is can
be used to solve the normal equations AT

Ax = A
T
b. Let A and b be as in (16), and let

AP = Q[R1 R2]

be the general condensedQR factorization of A, where P 2 Rn⇥n is a permutation matrix, Q 2 Rm⇥k has orthonor-
mal columns, R1 2 Rk⇥k is nonsingular and upper triangular, and R2 2 Rk⇥(n�k) with k = rank (A)  min{n,m}.
Replacing A by A = Q[R1 R2]PT in the normal equations gives the following equivalent system:

P
T


R

T
1

R
T
2

�
Q

T
Q
⇥
R1 R2

⇤
Px = P

T


R

T
1

R
T
2

� ⇥
R1 R2

⇤
Px = A

T
b = P

T


R

T
1

R
T
2

�
Q

T
b,

since Q
T
Q = Ik the k⇥ k identity matrix. By multiplying on the left by P , replacing b by b̂ := Q

T
b 2 Rk and x by

(30) z :=
⇥
R1 R2

⇤
Px,
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we obtain 
R

T
1

R
T
2

�
z =


R

T
1

R
T
2

�
b̂.

Let us see if we can reconstruct a solution to the normal equations by choosing the most obvious solution to the
this system, namely, z := b̂. If this is to yield a solution to the normal equations, then, by (30), we need to solve
the system ⇥

R1 R2

⇤
Px = b̂ .

Set 
w1

w2

�
:= Px ,

where w1 2 Rk and w2 2 R(n�k), and consider the system

R1w1 = b̂ 2 Rk
.

Since R1 2 Rk⇥k is invertible, this system has a unique solution w1 := R
�1
1 b̂. Indeed, this system is very easy to

solve using back substitution since R1 is upper triangular. Next set w2 = 0 2 R(n�k) and

x := P
T
w = P

T


R

�1
1 b̂

0

�
.

Then

A
T
Ax = A

T
AP

T


R

�1
1 b̂

0

�

= A
T
Q
⇥
R1 R2

⇤
PP

T


R

�1
1 b̂

0

�

= A
T
QR1R

�1
1 b̂ (since PP

T = I)

= A
T
Qb̂

= A
T
QQ

T
b

= P
T


R

T
1

R
T
2

�
Q

T
QQ

T
b (since A

T = P
T


R

T
1

R
T
2

�
Q

T )

= P
T


R

T
1

R
T
2

�
Q

T
b (since Q

T
Q = I)

= A
T
b,

that is, x solves the normal equations!
Let us now consider the computational cost of obtaining the solution to the linear least squares problem in this

way. The key steps is this computation are as follows:

AP = Q[R1 R2] the general condensed QR factorization o(m2
n)

b̂ = Q
T
b a matrix-vector product o(km)

w1 = R
�1
1 b̂ a back solve o(k2)

x = P
T


R

�1
1 b̂

0

�
a matrix-vector product o(kn).

Therefore, the majority of the numerical e↵ort is in the computation of the QR factorization.

5.3. Computing the Full QR Factorization using Householder Reflections. In subsection 5.1 we
showed how to compute the QR factorization using the Gram-Schmidt orthogonalization procedure. We also
indicated that due to numerical round-o↵ error this procedure has di�culty in preserving the orthogonality of the
columns of the matrix Q. To address this problem we presented the mathematically equivalent modified Gram-
Schmidt process which has improved performance. We now present a very di↵erent method for obtaining the
full QR factorization. The approach we describe is very much like Gauss-Jordan Elimination to obtain reduced
echelon form. However, now we successively multiply A on the left by unitary matrices, rather than Gauss-Jordan
elimination matrices, which eventually put A into upper triangular form. The matrices we multiply by are the
Householder reflection matrices.
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Given w 2 Rn we can associate the matrix

U = I � 2
ww

T

wTw

which reflects Rn across the hyperplane Span{w}?. The matrix U is call the Householder reflection across this
hyperplane.

Given a pair of vectors x and y with

kxk2 = kyk2, and x 6= y,

the Householder reflection

U = I � 2
(x� y)(x� y)T

(x� y)T (x� y)
is such that y = Ux, since

Ux = x� 2(x� y)
kxk2 � y

T
x

kxk2 � 2yTx+ kyk2

= x� 2(x� y)
kxk2 � y

T
x

2(kxk2 � yTx)
(since kxk = kyk)

= y .

We now show how Householder reflections can be used to obtain the QR factorization. Let µ := min{n,m}. The
procedure described below terminates in at most   ⌧ steps. The approach is based on a numerical linear algebra
procedure call deflation where the dimension of the problem is reduced at each iteration. Here we describe the basic
idea of a deflation step in the QR-factorization of the matrix A0 2 Rm⇥n \ {0}. Begin by block decomposing A0 as

A0 =


↵0 a

T
0

b0 Ã0

�
, with Ã0 2 R(m�1)⇥(n�1),

and set

⌫0 =

����

✓
↵0

b0

◆����
2

.

If ⌫0 = 0, then multiply A0 on the left by a permutation matrix P0 to bring a non-zero (largest magnitude) column
in A0 into the first column and the zero column to the last column. Then block decompose A0P0 as above with

A0P0 =


↵0 a

T
0

b0 Ã0

�
, with Ã0 2 R(m�1)⇥(n�1),

and set

⌫0 =

����

✓
↵0

b0

◆����
2

6= 0.

Let H0 be the Householder transformation that maps
✓
↵0

b0

◆
7! ⌫0 e1 :

H0 = I � 2
ww

T

wTw
where w =

✓
↵0

b0

◆
� ⌫0e1 =

✓
↵0 � ⌫0

b0

◆
.

Then, there is a matrix A1 2 R(m�1)⇥(n�1) and a vector a1 2 Rn�1 such that

H0A0P0 =


⌫0 a

T
1

0 A1

�

If ⌧ = 1 or A1 = 0, we are done; otherwise, repeat the process on the matrix A1. Decompose A1 as

A1 =


↵1 a

T
1

b1 Ã1

�
, with Ã1 2 R(m�2)⇥(n�2),
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and set

⌫1 =

����

✓
↵1

b1

◆����
2

.

If ⌫1 = 0, then multiply A1 on the left by a permutation matrix P1 to bring a non-zero (largest magnitude) column
in A1 into the first column and the zero column to the last column. Then block decompose A1P1 as above with

A1P1 =


↵1 a

T
1

b1 Ã1

�
, with Ã1 2 R(m�2)⇥(n�2),

and set

⌫1 =

����

✓
↵1

b1

◆����
2

6= 0.

Let H1 be the Householder transformation that maps
✓
↵1

b1

◆
7! ⌫1 e1 :

H1 = I � 2
ww

T

wTw
where w =

✓
↵1

b1

◆
� ⌫1e1 =

✓
↵1 � ⌫1

b1

◆
.

Then, there is a matrix A2 2 R(m�2)⇥(n�2) and a vector a2 2 Rn�1 such that

H1A1P1 =


⌫2 a

T
2

0 A2

�
.

Consequently, 
1 0
0 H1

�
H0A0P0


1 0
0 P1

�
=


1 0
0 H1

� 
⌫0 a

T
1

0 A1

� 
1 0
0 P1

�

=


⌫0 a

T
1

0 H1A1P1

�

=

2

4
⌫0 a

T
1

0


⌫2 a

T
2

0 A2

�
3

5

=

2

4
⌫0 a12 ã

T
1

0 ⌫2 a
T
2

0 0 A2

3

5 .

If ⌧ = 2 or A2 = 0, we are done; otherwise repeat as above on the matrix A2. This process terminates after
  ⌧ iterations with an upper triangular factorization of the form

eH
eH�1 . . .

eH0A0P0
eP1 . . .

eP =

2

6666666666666664

⌫1 a12 a13 a14 · · · a1 · · · a1n

0 ⌫2 a23 a24 · · · a2 · · · a2n

0 0 ⌫3 a34 · · · a3 · · · a3n
...

...
...

. . .
...

...
...

...
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · ⌫ · · · an

0 0 0 0 · · · 0 · · · 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · 0 · · · 0

3

7777777777777775

= R,

where the zeros below the  row are absent if m = . Then P := P0
eP1 . . .

eP is a permutation matrix and
Q := eH

eH�1 . . .
eH0 is unitary with A0P = QR. The matrix A0 is surjective if and only if  = m in which case

P = I. On the other hand, A0 is injective if and only if  = n and again P = I.
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If the above method is implemented by always permuting the column of greatest magnitude into the current
pivot column, then

AP = QR

gives a QR-factorization with the diagonal entries of R nonnegative and listed in the order of descending magnitude,
i.e. ⌫1 � ⌫2 · · · � ⌫ > 0. Since Q is unitary, this is the full QR factorization in (29).

The numerical stability of the procedure can be improved with a slight change to the Householder transfor-
mations at each step. Let Hs be the Householder transformation used at iteration s. Redefine Hs so that it
maps

✓
↵s

bs

◆
7! �sign(↵s)⌫s e1 :

Hs = I � 2
ww

T

wTw
where w =

✓
↵s

bs

◆
+ sign(↵s)⌫1e1 =

✓
↵s + sign(↵s)⌫s

bs

◆
,

where

sign(↵) :=

8
><

>:

1 , ↵ � 0

�1 , ↵ < 0

0.

Note that this avoids the possibility of subtraction by nearly like terms and increases the magnitude of the vector
w. The monotonicity and non-negativity of the ⌫s’s can be recovered on termination by redefining Q := QD and
R := DR, where D := diag(sign(⌫1), sign(⌫2), · · · , sign(⌫), 1, · · · , 1) 2 Rm⇥m is a diagonal unitary matrix since
D

T
D = I.


