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Preface!
!The Newton’s Method Identification Problem!
!Given an iterative procedure that is effective and fast, and is 
certainly not know to be Newton’s method, demonstrate that 
it is really a form of Newton’s method by exhibiting the 
fundamental underlying (often well-hidden) nonlinear 
equation.!

!
!Our Message!
!“All” effective and fast methods are forms (perhaps very 
disguised) of Newton’s Method. Moreover, some effective 
non-fast algorithms may also be forms on Newton’s method.!
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Outline!
n  Preliminaries!
n  Examples of the Newton Identification Problem!
n  Development of algorithms for the eigenvalue problem!
n  Development of optimization algorithms and 

equivalences to eigenvalue algorithms!
n  An alternative development of Rayleigh Quotient 

Iteration!
n  Summary Statements!



5!

Cookbook Theory!
Consider the fixed point problem!
!
!

and the obvious iterative method!
!
Def: Local convergence!€ 

x∗ = S(x∗)

€ 

xk+1 = S(xk )

xk→x∗ for all  x0 ∈ N(x∗)
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Cookbook Theory (cont.)!
!Def: Convergence rate!
!
!

!
    Linear: !    !!
!Quadratic:   !!
!Cubic: !    ! !!

p
kk xxCxx ∗∗

+ −≤−1

1  and  1 =< pC
2=p

3=p
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!Local convergence if!
!
!Quadratic convergence if!

!
    Cubic convergence if!
!! and	


Theory in a Nutshell!

( ) 1)( <ʹ′ ∗xSρ

€ 

ʹ′ S (x∗) = 0

€ 

ʹ′ S (x∗) = 0

€ 

ʹ′ ʹ′ S (x∗)= 0

( ) ⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ −=−−ʹ′ʹ′ ∗∗∗∗ 3
0,)( xxxxxxxS kkk
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Newton’s Method for F(x)=0 

!
!and!
!
!Therefore:  Newton’s method is locally 
and quadratically convergent, i.e., it is 
effective and fast.!

€ 

S(x)= x − ʹ′ F (x)−1F(x)

€ 

ʹ′ S (x∗) = 0



Application of the Newton 
Identification  Approach to Several 

Examples from the Literature!

9!
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The Babylonian’s Computation of!
Consider:! 22=x

€ 

x =
2

x

€ 

xk+1 =
2

xk

  

€ 

x1 =
2

x0
x2 = x0

x3 =
2

x0
x4 = x0
L

Write:!
Iterate:!
Failure:!

2
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The Babylonian’s (cont.)!
Prune and tune:  add x to both sides                        !
!
   !

Simplify:                            !
!

Iterate:!
!
 !
The resulting algorithm is effective and fast.!

€ 

x + x = x +
2

x

⎟
⎠
⎞

⎜
⎝
⎛

+=
x

xx
2

2

1

€ 

x0 = 1.00000
x1 = 1.50000
x2 = 1.41666
x3 = 1.41421
x4 = 1.41421
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The Babylonian’s Method is 
Newton’s Method!

€ 

F(x) = x2 −2

€ 

ʹ′ F (x)= 2x

€ 

xk+1 = xk −
F(xk )
ʹ′ F (xk )

€ 

xk+1 = xk −
xk
2 −2
2xk

=
1
2
xk +

2
xk

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
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Unconstrained Optimization!
!Problem: ! ! ! !
!
!Algorithm: ! ! !
!
!where      solves the quadratic program!

)(min xf
x

kkk xxx Δ+=+1

xxfxxxf TT
x

Δ∇Δ+Δ∇
Δ

)(
2
1)(min 2

x

Δxk
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Unconstrained Optimization (cont.)!
!Experience:  This algorithm is fast and 
effective.!

!
!Fact: This algorithm is Newton’s Method 
where the “equivalent” square nonlinear 
system is! 0)()( =∇≡ xfxF
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Equality-Constrained Optimization!
!Problem: ! ! ! !!

!Idea: Combining Newton nonlinear 
equation and Newton unconstrained 
optimization approaches suggests!

min f (x)
s.t.  h(x) = 0
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Equality-Constrained (cont.)!
!Algorithm: ! !!
!where         solves the quadratic program!
!!

!
!!
!Fact: While this approach can be found in the 
literature it is not effective, i.e., does not give 
local convergence.!

    xk+1 = xk + Δxk

  Δxk

    

min
Δx

 ∇f (xk)T Δx +
1
2
ΔxT∇2 f (xk )Δx

s.t.   ∇h(xk )Δx + h(xk) = 0
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The Tuning and Pruning Process!
!Researchers led by MJD Powell (circa 
1970) realized that “constraint curvature” 
had to be added to the model subproblem 
and converged upon the following so-called 
Successive Quadratic Programming Method!

kkk xxx Δ+=+1
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The Tuning and Pruning (cont.)!
!where        solves the quadratic program!
!!
!
!!
!Here              is the Hessian with respect 
to x of the Lagrangian function!

  Δxk

    

min
Δx

 ∇f (xk)T Δx +
1
2
ΔxT∇ x

2l(xk, yk)Δx

s.t.   ∇h(xk )Δx + h(xk) = 0

),(2 yxlx∇

)()(),( xhyxfyxl T+=
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The Tuning and Pruning (cont.)!
!The yk’s are updated as the multipliers obtained 
for the constraints in the solution of the 
quadratic program subproblem.!
!Experience: The SQP algorithm is effective 
and fast.!
!Fact: The SQP algorithm is Newton’s method 
where the “equivalent” square nonlinear 
system  is!

0),(),( =∇≡ yxlyxF
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The Tuning and Pruning (cont.)!
!i.e.!
!
!
!the first-order necessary conditions.!

,0)(
0),(

=

=∇

xh
yxlx
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   OK enough warming-up. Let’s get after the big 
score.!

!
!Rayleigh Quotient Iteration as Newton’s Method!

!
!The Quintessential “Tuning and Pruning” Process!
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Given symmetric ! !!
!
find ! ! ! ! !!
!
such that ! ! ! !!
!
Rayleigh quotient:!
!
Remark:!

€ 

A∈ Rnxn

€ 

(x∗,σ*)

€ 

Ax∗ =σ∗x∗

€ 

σR (αx) =σR (x)
€ 

(x ≠ 0)

€ 

σR (x)=
xT Ax
xT x

The Symmetric Eigenvalue 
Problem!
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n  1870’s – Lord Rayleigh:!
!
!
!
1944 – H. Wielandt: Suggests fractional iteration!
 !

( ) 1)( exIxA R =− +σ

Chronology!

€ 

e1

( ) xxIA =− ˆσ

Note: σ =0 gives inverse power.!

(shifted and normalized inverse iteration)!

 (    is the first unit coordinate vector)!

jx
x

x ˆ
ˆ

=
+
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n  1945 – J. Todd (lecture notes), 
“approximately solve”:!

€ 

A−σR (x)I( )x+ = 0

Chronology (cont.)!
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Chronology (cont.)!
n  1949 – W.  Kohn: (in a letter to the editor) 

suggests!
!

(any unit coordinate vector)!
    !
    Kohn argues (without a rigorous proof) 

quadratic rate for!
€ 

A−σR (x)I( )x+ = ei

€ 

σ k{ }.
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Chronology (cont.)!
n  1951 – S. Crandall: !
!

!

!
(this is unnormalized RQI)!

!!
    Using an argument that tacitly assumed convergence, 

Crandall established cubic rate for          !
          !
!Remark:          will not converge. However,     !
!can converge to      .!

A−σ R(x)I( ) x+ = x

€ 

xk{ }

€ 

σR (xk )

€ 

σ*

xk{ }.
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Chronology (cont.)!
n  1957 – A.M. Ostrowski:!

a)                                                               !   
Rigorously established quadratic rate  for            	


b)  Observed that Wielandt’s fractional iteration combined with a) 
above leads to 	


	
 	
 	
       (unnormalized RQI)	

!Ostrowski rigorously established cubic rate for !

c)  Ostrowski aware of Kohn, but unaware of Crandall, Forsythe 
points out (while paper in press) (10/57) Crandall’s earlier work 
(RQI algorithm and cubic rate). Ostrowski acknowledges and 
remains cool.!

€ 

A−σR (x)I( )x+ =η )0( ≠η

€ 

σ k{ }.

€ 

A−σR (x)I( )x+ = x

€ 

σ k{ }.

(viewed as implementation of Todd)!
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Chronology (cont.)!
n  1958 – A.M. Ostrowski (Ostrowski fights 

back):!
a)  Points out cubic in x does not imply cubic in σ. 	

b)  Points out that a normalization* can be applied!
       to      to guarantee convergence of       !	


€ 

x+

⎭
⎬
⎫

⎩
⎨
⎧

k

k
x
x to an eigenvector.!

* Wielandt had a normalization (∞ - norm)!
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Chronology (cont.)!
!This “tuning and pruning” process has taken us in the 
time period 1870’s to 1958 to!
!!

!Rayleigh Quotient Iteration (RQI):!!
a)  Solve: ! !!
b)  Normalize: ! !!

!Attributes:!
a)  Requires solution of linear system!
b)  Fast convergence (cubic)!

!Observation: At solution RQI is singular.	


€ 

A−σR (x)I( )y+ = x

€ 

x+ =
y+

y+
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Some Points to Ponder!
n Wielandt gave the eigenvalue 

approximation update formula!

jx
1

+=+ σσ

Theorem. Wielandt iteration is 
equivalent to Newton’s method on !

01
0

=−

=−

xe
xAx

T
j

σ



31!

Some Points to Ponder (cont.)!
n  Wielandt stressed nonsymmetric A. !
n  Wielandt gave other eigenvalue formulas, but 

he never suggested the Rayleigh quotient. If he 
had he would have given normalized RQI in 
1944. !

n  RQI performs better than Wielandt iteration for 
both symmetric and nonsymmetric matrices with 
real eigenvalues, except for the example matrix 
given in Wielandt’s paper.!
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Some Points to Ponder (cont.)!

!DID HELMUT WEILANDT KNOW OF 
THE RAYLEIGH QUOTIENT?!
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Some Points to Ponder (cont.)!
n Peters and Wilkinson (1979) observe that 

obtained from inverse iteration and       
obtained from one step of Newton on !

+x
+x

01
0

=−

=−

xx
xAx

T

σ

are the same (Newton to first order) !
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Some Points to Ponder (cont.)!
!They propose Newton on!

!
!
!
!In this case the (∞-norm) normalization is 
automatically satisfied and the quadratic 
convergence is assured, unlike the two-norm 
case where the normalization may destroy the 
quadratic convergence. They did not realize that 
they had reinvented Wielandt iteration. But wait, 
for there is more.!

.01
0

=−

=−

xe
xAx

T
j

σ
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Normalized Newton’s Method: (NNM) !
For the nonlinear equation problem !
!
when it is known that !

a)  Solve:               !
!
b)  Normalize: ! ! ! !            !

!
Attributes:!

a)  Requires solution of a linear system!
b)  Fast convergence (quadratic)!

€ 

F(x)= 0

€ 

x∗ =1.

€ 

ʹ′ F (x)Δx =−F(x)

€ 

x+ =
x+Δx
x+Δx



“BELIEF IN FOLKLORE”!
!

There exists F such that RQI ⇔ NNM on F.	
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n  Our objective: Search for the missing F.!
n  Possible rewards:!

a)  Explain why asymptotic singularity does not 
hurt phenomenal convergence rate of RQI.!

b)  Explain why convergence is cubic and not 
just quadratic.!
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Historical Notes!
n  1965 etc. – J. Wilkinson!
n  Instrumental in exposing myth that proximity !
       of                    to a singular matrix spoils the !
       powerful convergence in practice (theory versus!
       practice)!

!(Angle not the magnitude that is important)!
n  1969 – W. Kahan – B. Parlett!

a)  Global convergence of RQI!
b)  Monotone decreasing residuals!

IxA R )(σ−

0)( 2 ↓−= xxAxr xσ
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Motivation (John Dennis Question)!
Is RQI ⇔ Normalized Newton 

on 
(*) 
!!
!Theorem: Given any x, not an eigenvector of A, the 
Newton iterate on (*) is ZERO.!

!
!(Normalized Newton is not defined)!
!(Newton’s Method goes directly to the unique singular point of F.) 

( ) ?      0)()( =−≡ xIxAxF Rσ



Nonlinear Programming !
and!

Our Equivalences!

40!
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Equality Constrained Nonlinear 
Program!

€ 

minimize f (x)
subject to h(x) = 0 

€ 

f : Rn → R   and 

€ 

h : Rn →Rm(m < n)

  

€ 

l (x,λ)= f (x)+ λT h(x)

  

€ 

l :Rn ×  Rm →R

Lagrangian Function:	
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Lagrange Multiplier Rule  
(First Order Necessary Conditions)!

.0)(    
),(),( =⎟
⎠
⎞⎜

⎝
⎛∇=∇ xh

xx x λλ 

0)(                                          
...                                           

0)(                                           
0)(...)()(

1

11

=

=

=∇++∇+∇

xh

xh
xhxhxf

m

mmλλ
i.e.	


(*)	
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Constructing The Eigen-Nonlinear 
Program!
!Consider!

!
!This problem is not well posed for Newton’s 
Method.  It has several continua of solutions.!

!
!We can obtain isolated solutions for simple 
eigenvalues by adding the constraint!

!

€ 

min
x ≠ 0

€ 

xT Ax
xT x

€ 

xT x =1.
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The Eigen-Nonlinear Program!
x

AxxT
  

  min

0)1(  s.t. =−xxT

€ 

(A−λI)x = 0
Necessary conditions:	


Observations:	

Unit Eigenvectors 	
⇔ 	
Stationary Points	

Eigenvalues          	
⇔ 	
Lagrange Multipliers	


0)1( =−xxT
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The Mathematicians Crutch!
!Reduce the problem at hand to a solved problem, or a 
sequence of such solved problems.!

!
!Example: Differentiation and the partial derivative!

!
!Example: Newton’s Method – reduces the solution of a 
square nonlinear system of equations, to solving a sequence 
of square linear systems of equations.!

!The present case:  SUMT– Sequential unconstrained 
minimization  techniques.  We reduce the solution of the 
constrained optimization problem to solving a sequence of 
unconstrained problems.!
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Penalty Function Method (Courant 
1944)!

!Observation: Stationary points of our equality 
constrained optimization problem do not 
correspond to stationary points of  P(x;ρ)	


        

Proof:	


⎭
⎬
⎫

⎩
⎨
⎧

=

=∇+∇

0)(
0)()(

xh
xhxf λ { }0)()()( =∇+∇ xhxhxf ρ

€ 

⇐
⇒

x
xhxhxfxP T

  
)0(   )()(

2
)();(  min >+= ρρρ
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Penalty Function Method (cont.)!
!Observation: We need ρh(x)=λ  at a solution 
but λ ≠ 0 and h(x)=0; hence we must have!

!
!!
!We therefore perform the minimization 
sequentially for a sequence          such that!€ 

ρ = +∞    (∞⋅0 = λ)

€ 

{ρk}

€ 

ρk →+∞.
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!Normalized Inverse Iteration!
a)  Solve!
b)  Normalize	


€ 

 x+ =
y
y

€ 

Ay = x

Equivalence Result!

Theorem: Normalized inverse iteration is 
equivalent to normalized Newton's method on 
the penalty function for the eigen-nonlinear 
program!

.0any for  )1(
2

);( 2 ≠−+= ρρρ xxAxxxP TT
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Equivalence Result (cont.)!
!But wait, we don’t get quadratic convergence. Why?!

!

!Answer:!
!
!For eigenpair               with            and       !
!we have!
!!
!Therefore, the unit eigenvector is not a stationary point of             !

                 for any ρ, as we pointed out before. The 
normalization forces convergence but not to a stationary 
point.!

xxxAxxP T
x )1(2);( −+=∇ ρρ

€ 

(x*,σ *) 0* ≠σ

€ 

x* =1

022),( **** ≠==∇ xAxxPx σρ

€ 

P(x;ρ)
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Multiplier Method  
(Hestenes/Powell ) (1968-1969)!
!Augmented Lagrangian:!
!
!
!Observation: As before stationary points of 
our equality constrained optimization 
problem do not correspond to stationary 
points (in x) of !

€ 

L(x,λ;ρ) = f (x)+ λT h(x)+
1
2
ρh(x)T h(x)    (ρ > 0)

€ 

L(x,λ;ρ).
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!Multiplier Method:!
!Given           obtain     as the solution of!
!
!
    Remark: The multiplier method does not need               

!         as did the penalty function method.  In 
the penalty function method           causes 
arbitrarily bad conditioning.!

Multiplier Method (cont.)!

€ 

(x,λ,ρ)

€ 

x+

x
xL

  
);,( min ρλ

€ 

Let  λ →λ+  and  ρ →ρ+

€ 

ρ→+∞
∞→ρ
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Equivalence Result!
!Normalized Shifted Inverse Iteration with shift σ!

a)  Solve!

b)  Normalize!
!!

      Theorem: Normalized shifted inverse iteration with shift σ is 
equivalent to normalized Newton's method on the augmented 
Lagrangian for the eigen-nonlinear program with multiplier 
estimate σ, i.e., on  

€ 

 (A−σI)y = x

€ 

 x+ =
y
y

€ 

L(x;σ;ρ) = xT Ax +σ(xT x −1)+
ρ
2

(xT x −1)2   for any ρ ≠ 0
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Equivalence Result (cont.)!
!But wait, we don’t have quadratic 
convergence. Why?!

!Answer: Same as for the penalty function 
case. The normalization forces 
convergence, but not to a stationary point, 
but to a solution of our problem.!
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In the Interest of Efficiency We Ask!
!Question: Can we move away from a 
sequence of unconstrained optimization 
problems to just one unconstrained 
optimization problem, i.e., a so-called 
exact penalty function?!
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The Fletcher Exact Penalty 
Function (1970)!

( )x,ρ
x

φ  min

where! ( ) ));(,(, ρλρφ xxLx =

and λ(x) is the well-known Lagrange 
Multiplier Approximation Formula!

( ) ( ) ( )( ) ( ) ( )xfxhxhxhx TT ∇∇∇∇−≡
−1

λ

observe that! ( ) .** λλ =x
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Theorem:!
!For ρ sufficiently large our constrained 
minimizers are minimizers of φ, i.e., φ is an 
exact penalty function.!

Criticism: !
n  How large is sufficiently large!
n  Derivatives are out of phase, i.e.,!

( )xφ∇ ( ) ( )xhxf i
22 ,∇∇involves!
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Instead of considering the unconstrained 
optimization problem!

Correcting the Deficiencies of the 
Fletcher Exact Penalty Function!

min
x

 ϕ(x;ρ)

consider the nonlinear equation problem!
0    0));(,();( ≠=∇= ρρλρ xxLxF x

The Multiplier Substitution Equation 
(Tapia 1978)!
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Observation:!
  

€ 

F(x;ρ) =∇xl (x,λρ (x))

).()()( xhxx ρλλρ +=where!

Remark:  System is a square  nonlinear 
system of equations; hence, the use of 
Newton's method is appropriate. !



Substitute!
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Theorem!
!Stationary points of the equality constrained 
optimization problem correspond to zeros of the 
multiplier substitution equation.!

!

 !Proof (very pretty) !!
( ) 0)()()()( =+∇+∇ xhxxhxf ρλ

)(xλ

( )
0)()(

)()()()()()( 1

=∇

+∇∇∇∇∇−∇
−

xhxh
xfxhxhxhxhxf TT

ρ



60!

Theorem (cont.)!
multiply by             to obtain !!

€ 

∇h(x)T

 0)( =xhρtherefore!

€ 

∇h(x)T∇h(x)ρh(x) = 0

 0≠ρ and!
so!

€ 

h(x) = 0

€ 

∇f (x)+∇h(x)σ (x) = 0and!



61!

Equivalence Result !
!Normalized Rayleigh Quotient Iteration !

a)  Solve !
b)  Normalize!

!
!Theorem: Normalized Rayleigh Quotient Iteration 
is equivalent to normalized Newton's method on 
the multiplier substitution equation, for any ρ ≠ 0, 
i.e., on !

y
yx =+

xyIxA R =− ))(( σ

0));(,();( =∇= ρλρ xxLxF x



62!

Equivalence Result (cont.)!

where !
).()())()(()( 1 xfxhxhxhx TT ∇∇∇∇−= −λ

Remark: We finally have our equivalence. !
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!But wait, we don’t have quadratic 
convergence (indeed we have cubic). Why? !



Some Observations!
on the Cubic Convergence of RQI !

64!
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Theorem!
!If     is simple, then               is nonsingular 
for all x in a neighborhood of each unit 
eigenvector corresponding to     and for all   
ρ ≠ 0. 

 !
!Moreover, the Normalized Newton Method is 
locally cubically convergent with convergence 
constant less than or equal to one. !

€ 

ʹ′ F (x;ρ)

iσ

iσ
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Implication!
!Although asymptotically RQI becomes a 
singular algorithm, this singularity is 
removable.*!

 !
!*Jim Wilkinson in the 1960’s and 1970’s repeatedly 
stated that the singularity doesn’t hurt – the angle is 
good, the magnitude is not important.!
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Cubic Convergence!
!Newton Operator: !!

 !
!Normalized Newton Operator: !

 !
  !Lemma: Let     be a unit eigenvector corresponding to a 

simple eigenvalue, then!

)()()( 1 xFxFxxN −ʹ′−=

2)(
)()(
xN
xNxS =

∗x

0)( =ʹ′ ∗xS

( ) ( )][,)( ∗∗∗∗∗∗ −−≤−−ʹ′ʹ′ xxxxxKxxxxxS T

a.!

b.!

(quadratic)!
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Cubic Convergence (cont.)!
Surprise: If                   then!,1==∗ xx

( ) ( ) 2
2
1121

2
11 xxxxxxxxx TTT −=+−=−=− ∗∗∗∗∗

( ) ( )30,)( ∗∗∗∗ −=−−ʹ′ʹ′ xxxxxxxS

Conclusion:!

Must normalize in 2-norm for good x-behavior.!
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Two Fascinating Reflections !
n The beauty of Euclidean geometry !

1== yx

2

2
1)( yxyxxT −=−

If! then!
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Two Fascinating Reflections (cont.)!
n The Babylonian shift (a universal tool?)!

n  In “deriving” Newton’s Method for          
when                uniformly  failed they 
corrected by shifting by x, i.e., they 
considered  !

x2 = 2,

x
xS 2)( =

( )xxSxSnew += )(
2
1)(
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Two Fascinating Reflections (cont.) !
n  In deriving Newton’s method as Rayleigh 

quotient iteration for symmetric eigenvalue 
problem, when !

xx
Axxxx T

T

R == )()( λλ

uniformly failed, we considered !
( )1
2
1)()( −+= xxxx T

Rλλ
so that !

xxx R +∇=∇ )()( λλ

i.e., we corrected by shifting by x.	
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An Alternative Approach to  
Deriving RQI !
Consider the eigen-nonlinear program !

min
x

   xT Ax

s.t.     (1− xT x) = 0
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Newton’s Method !

λλλ Δ+=

Δ+=

+

+ xxx

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−
−=⎟

⎠

⎞
⎜
⎝

⎛
Δ

Δ
⎟
⎠

⎞
⎜
⎝

⎛
−

−−
)1(

2
1

)(

0 xx

xIAx
x

xIA
TT

λ

λ
λ

( ){ }kkx λ,

where !

convergence of! is quadratic.!
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Normalized Newton’s Method  
(closing the norm constraint) !

Tapia- Whitley 1988:!
The convergence rate of! is!

€ 

λ+ = λ +Δλ

2

)(
xx
xxx

Δ+
Δ+

=+

The convergence rate of! is!
{ }kx 21+

{ }kλ 21+

Closing the constraint improved the 
convergence rate from 2 to	
 .21+
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!Remark: Recall that Peters and Wilkinson 
were concerned that this two-norm 
normalization would destroy quadratic 
convergence. Indeed, it improves the 
rate.!

Normalized Newton’s Method 
(cont.)!
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Normalized Newton’s Method 
(cont.)!
!Idea: Let’s choose      to “close” the equation !

!
!Remark:  We can’t do this, because for fixed   

!this is an overdetermined system in λ .!
!

!O.K., let’s “close” in the least-squares sense, i.e., 
let      be the solution of !

 !

€ 

(A −λI)x+ = 0
+λ

x+

min
λ

  (A−λI )x+ 2

+λ
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Normalized Newton’s Method 
(cont.)!
!this gives!
!
!Our closed in    and least-squares closed 
in λ Newton’s method becomes !

!
 !

)( +
++

++
+ == x

xx
Axx

RT

T
σλ

2
xx
xxx

Δ+

Δ+
=+

€ 

λ+ =
x+Ax+

x+
T x+

x
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Normalized Newton’s Method 
(cont.)!
!Theorem: This algorithm is RQI. Therefore !
 !
    convergence of       is cubic !
 !
    convergence of       is cubic. !€ 

xk{ }

€ 

λk{ }
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Summary!
n  Newton’s Method gives quadratic convergence. !
n  Newton’s Method followed by (normalization) a 

closing of  the norm constraint gives a convergence 
rate of !

n  Newton’s Method followed by a (normalization) 
closing of the norm constraint, followed by a least-
squares closing of the gradient of the Lagrangian 
equal to zero equation, gives a convergence rate of 
3 and also gives us Rayleigh Quotient Iteration. !

.21+


