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 Monotonicity Properties of

 Variational Integrals, Ap Weights
 and Unique Continuation

 NICOLA GAROFALO & FANG-HUA LIN

 1. Introduction and statement of the results. Let ft be a connected open
 subset of R", n > 3, and let A(x) be a symmetric n x n matrix-valued function
 on O on which we make the following assumptions:

 (i) there exists a T > 0 such that for every rjEÜ

 (1.1) Iav(x) - aij(y)\ < V\x - y\, i,j = 1, ... , n;
 (ii) there exists a A. E (0,1) such that for every x G ft and ÇER"

 (1.2) ^|2<(AWU)<r'|5|2.
 We will consider solutions, u, to the equation

 (1.3) Lu = div(A(jt)Vu(jc)) = 0 in ft.

 By this we will mean that u G H\£(ft) and that for every cJj G Hq2(ft)

 I.  (A(x)VM(x),V<J)(x))d)c = 0.

 Under the assumptions (1.1) and (1.2) it is well known (see, e.g., [GT], Theorem
 8.8) that every solution to (1.3) is in //^(ft). Since all the results in this paper
 are of a local nature, we will assume henceforth that ft strictly contains B2, the
 closure of the ball with radius 2 and center at the origin.

 One of the main results of this paper can be stated as follows.

 Theorem 1.1. Let u G Hl^(fl) be a solution to (1.3). (i) If u ^ 0 there exist
 a p > 1 and a constant A > 0 such that for any ball BR, such that the concentric
 ball C Bi, we have

 a'4>

 In (1.4) A andp depend on u, I\ n, but do not depend on BR. (ii) If u ^ const.
 there exist a q > 1 and a constant B > 0 such that for any ball BR as in (i)

 245
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 246 N. GAROFALO & F.-H. LIN

 (i'5) ss

 B and q in (1.5) are independent of BR, but they depend on u, F, A. and n.

 The content of Theorem 1.1 can be summarized by saying that, under the stated
 conditions, |u| and |Vw| are, respectively, an Ap and an Aq weight of Muckenhoupt
 in Bt. A condition like (1.4), where |w| is replaced by a nonnegative w E Uc(R"),
 was first introduced by Muckenhoupt, [Muck], in order to characterize those mea
 sures wdx on R" for which the Hardy-Littlewood maximal operator is continuous
 from Lp{wdx) to itself. Our basic reference on Ap weights is the paper by Coifman
 and C. Fefferman, [CF]. Strongly related to (1.4) is the following so-called re
 verse Holder inequality. Let w > 0 be an Z.'(K, function in Bt. w is said to satisfy
 a reverse Holder inequality in 5, if there exist 8 and C positive such that for every
 ball Br, with C Bu

 °-6) (iSil/'S "c(i5jimb.
 In [CF] it is shown that if w satisfies (1.6) then it satisfies a condition like (1.4)
 for some p > 1, and that, conversely, (1.4) implies (1.6) for some 6 > 0.

 In Section 3 below we prove that if u 0 is a solution to (1.3), then u2 satisfies
 (1.6) for every 8 > 0. Moreover, if u const, we prove that |Vm|j with s =
 2n/(n + 2) satisfies a condition like (1.6) for a certain 8 > 0. From this, and the
 above-mentioned results in [CF], we obtain (1.4) and (1.5).

 Another result in this paper is a theorem of strong unique continuation. Before
 stating it we need to recall the relevant definition. A function u E Lffil) is said
 to vanish of infinite order at x0 E CI if for R > 0 sufficiently small

 I (1.7) I u2dx = 0(RN), for every A EN.
 *o|</?

 Theorem 1.2. Let u E H If (il) be a solution to (1.3).
 (i) If u vanishes of infinite order at x0 E fl, then u = 0 in ft.
 (ii) |V«| cannot vanish of infinite order at x0 E ft, unless u = const, in ft.

 We will prove Theorems 1.1 and 1.2 in Section 3 below. The proofs heavily
 rely on the establishment of the following

 Theorem 1.3. (Doubling condition). Let u E H If (il) be a solution to (1.3).
 Then there exists a positive constant C, depending on u, T, X and n, such that
 for any ball BR, with Bw CS,, we have

 (1.8) I u2dx<C I u2dx.
 J Bjr J Bp

 It is easy to see that C in (1.8) cannot be taken independent of u. In fact, if in
 R2 we consider the harmonic functions uk(r,Q) = /cosXO, then the corresponding
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 UNIQUE CONTINUATION 247

 Ck in (1.8) blows up like 2k for balls BR, Bm centered at the origin.
 Theorem 1.3 is the crucial part of the paper. Its main thrust consists in the fact

 that no sign assumption is made on«. It may be worthwhile to remark that for a
 nonnegative solution u, (1.8) is a simple consequence of Harnack's inequality,
 see, e.g., [M], However, if u has arbitrary sign the situation is drastically dif
 ferent, as one has to control the zeros of u. In a sense that will be made precise
 in Section 3, this is exactly what (1.8) does.
 At this point, to make our discussion clear without getting involved with the

 technical complications which arise in the general case, we make the simplifying
 assumption that L = A, the Laplace operator in R", and that m is a harmonic
 function in il, i.e., Au = 0. For a ball Br centered at the origin we consider the
 quantity

 (1.9) H(r)  = u2dHn.u
 J dB,

 where dH„-x denotes (n - l)-dimensional Hausdorff measure on dBr. It turns out
 that H(r) is related in a natural way, via the equation and the divergence theorem,
 to the Dirichlet integral

 (1.10) D(r) = \Vu\2dx,
 Jb,

 of u over Br. In fact, since An = 0 implies A(n2) = 2|Vn|2, setting np = (Vn,jc/p),
 p = |x|, we get from the divergence theorem

 (1.11) D(r) = ^ \ Mu2)dx = uupdHn.u Jb, J dB,

 On the other hand, a computation yields

 dH n- 1
 (112) — = H{r) + 2 uu,dHn.u dr r  I.
 thus from (1.12) and (1.11) we obtain

 4(log^).2D<r>
 dr\ r" / H(r)

 The crucial claim is that, if we set Mr) = rD{r)/H{r), then

 (1.14) N(r) is a nondecreasing function of r.

 (1.14) was first observed by F. J. Almgren, Jr., [Al], who called N(r) the fre
 quency of the harmonic function u. The reason for the name is that if in R2 we

 consider w*(r,6) = ak/ sin kQ, then N(r) = k. Using (1.14), integrating (1.13)
 between R and 2R, we obtain for 2R < 1
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 248 N. GAROFALO & F.-H. LIN

 (1.15) I08 ' 2 ~H{R) j - 2 log 2M1).
 Taking exponentials, and integrating in the radial variable R, (1.15) yields

 2/?

 (1.16) uzdHn.{dp < 2V"(I,log4 I I u dHn-}dp,
 Jo JdB0  /7 JO Jdß0

 i.e., (1.8) with C = 2"e"<l)'og4.
 In Section 2 we take up the approach outlined above to apply it to the case of

 solutions to the general equation (1.3). We define appropriate modifications of
 the functions H{r) and D(r) introduced earlier. These turn out to be the intrinsic
 analogs of (1.9), (1.10) when R" is endowed with a Riemannian metric suitably
 associated to (1.3). We thus show that (1.14) is a special case of a general prin
 ciple. In Theorems 2.1 and 2.2 below we prove that if « is a solution to (1.3),
 then the modified generalized frequency (2.13) is a monotone nondecreasing func
 tion of the radius r. This allows us to apply the ideas outlined above to the proof
 of Theorem 1.3.

 For our results to hold the assumption (1.1) on A(x) = (a,fx)) plays a basic
 role. One might wonder if this constitutes an unpleasant limitation of our method
 and weaker requirements on A(x) be possible. In this respect we emphasize that
 our results are best possible. In fact, in Section 3 we show that Theorem 1.3
 implies Theorem 1.2. Now a well-known counterexample by Plis, [P], shows that
 if the coefficients of A(x) in (1.3) are only a-Hölder continuous (any a E (0,1)!)
 then (i) of Theorem 1.2 may fail in general. Therefore, we cannot hope to get
 (1.8) if we weaken the assumptions of A(jc). A unique continuation theorem for
 divergence form elliptic operators with C0'1 coefficients had already been proved
 in a rather difficult paper by Aronszajn, Krzywicki and Szarski, [AKS], by means
 of Carleman type inequalities. Our results, therefore, give a new and considerably
 easier proof of those in [AKS]. One should also see the recent paper by Hörmander,
 [H], in which unique continuation for operators with singular lower order terms
 is proved. We wish to mention that Walter Littman has kindly brought to our
 attention that in his 1965 lecture notes Agmon, [A], had given a proof of unique
 continuation for operators with C1 coefficients based on convexity properties of
 integral averages. Agmon's approach, however, is completely different from ours.
 It relies on a reduction of the problem to an abstract ode setting and does not
 seem to extend to operators containing singular zero order terms (see below).

 In Section 4 we prove strong unique continuation theorems for some classes of
 Schrödinger equations. Our point there is to show that our method can be applied
 to operators containing lower order terms that are allowed to be very singu
 lar. Although we restrict our attention to some special classes of singular poten
 tials, it will be clear from the proofs that the method has a wider range of ap
 plication and similar ideas should work out more in general. We already have
 some interesting partial results and hope to return to this matter in a subsequent
 study.
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 In the unit ball ß, C R" we consider solutions, u, of the Schrödinger equation

 (1.17) -Am + Vm = 0 in B,,

 where

 (1.18) V(JC) = Î^P ceR'ffl-0'
 (We actually allow more general V's, but see Section 4 for precise details.) Among
 all the potentials (1.18) there is one that plays the role of a threshold. It is the
 inverse square potential of quantum mechanics, V(x) = c/|x|2. The corresponding
 Schrödinger operator has received a lot of attention because of the strange featureit
 displays: it behaves nicely or badly depending on the value of the constant c, see,
 e.g., [KSWW], [RS], [BG] and [F], Because of this c/|;t|2 is called strongly sin
 gular. Physically, the inverse square potential arises, for example, in the Ham
 iltonian for a spin-zero particle in a Coulomb field, see [C].
 Our main result concerning unique continuation can be stated as follows. So

 lutions of (1.17) have the strong unique continuation property (i.e., they cannot
 vanish of infinite order at one point x0 E Bt without being identically zero) so
 long as 0 < m < 2 for V in (1.18). In a counterexample at the end of Section 4
 we show that for any m > 2 unique continuation fails in general. For brevity's
 sake we give the proof of the positive results only in the two limit cases, m = 2
 (Theorem 4.1) and m = 0 (Theorem 4.2). However, the case 0 < m < 2 can be
 deduced by following the arguments in Theorems 4.1 and 4.2. The idea is to
 study the natural frequency function for solutions of (1.17), i.e.,

 rl(r)
 (1.19) A(r) = ,

 H(r)

 where H(r) is as in (1.9) and

 (1.20) I(r)= (|V«|2 + Vu2)dx.

 It is remarkable that (see the proof of Theorem 4.1) when V = c/|x|2, then N(r)
 has the same monotone character of the frequency of a harmonic function, see
 (1.14).

 Concerning Theorem 4.1 we mention that recently D. Jerison and C. Kenig
 have succeeded in proving strong unique continuation for -A + V under the as
 sumption V G L[^2(R"). Their proof is based on a difficult LP - LP Carleman type
 inequality, involving sharp exponents, see [JK], However, since c/\x\2 £
 Lloc on our result does not follow from those in [JK]. Moreover, since we do
 not require any local restriction on the size of V, Theorem 4.1 is not contained
 either in E. Stein's subsequent improvement of Jerison and Kenig's results con
 cerning V G L"^2 =c(R"), the Lorentz space of weak n/2 type, see [S]. We should
 also remark that, suitably modified, the proof of Theorem 4.1 can be used to
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 250 N. GAROFALO & F.-H. LIN

 conclude unique continuation for any radial potential that in ß, is bounded by
 c/\x\2, for some c E R+.
 Finally, we wish to thank Eugene Fabes for pointing out to us that, when deal

 ing with the Euclidean Laplacian, the radial deformation of the proof of Theorem
 2.1 can be replaced by a (equivalent) classical identity of Rellich.

 2. First variation and monotonicity property. Let ß, = {x E R" : \x\ < 1}
 denote the open unit ball in R", n s 3. We assume that on ß, a Lipschitz metric
 tensor is given, gij(x)dxi <8> dx}, which in polar coordinates (r,0,,.. .,0„_i) takes
 the form

 (2.1) dr <S> dr + r1bij{r,%)d%i ® dfy.
 Here we suppose that

 (2.2) b,jQ0,0) = 8y, i,j = 1, 2, ..., n - 1;

 and that there exists a positive constant A such that

 d
 (2.3)  bu(r ,0)

 dr
 — A, i, j 1,2, ..n 1.

 We denote by gij(x) the elements of the inverse matrix of g^x), and we set

 (2.4) g(x) = |det(g,7(x))|.

 With the notations VMw and divMX we denote, respectively, the intrinsic gradient
 of a function u and the intrinsic divergence of a vector field X on Bl in the metric

 gijdxi ® dxj. We recall that (see, e.g., [He], p. 387)

 A ..du a

 (2>5) VMU=^g"VxYx ij= i OXi OXj

 1 n d
 divMX = — 2 — (Vgx,).

 Vg ,= i dx,

 Let |x be a Lipschitz function on ß, such that there exist two constants Cx, C2 > 0
 for which

 (2.6) C, ^ p.(x) s C2, x E ß,.

 We assume that there exists a A > 0 such that in polar coordinates on ß, we have

 d

 (2.7) M.(0,0)=1,  7^
 dr

 A.

 We consider a solution n E //12(ß, ) of the equation

 (2.8) divM(p,(x)VMn(x)) = 0 inß,,

 and for r £ (0,1) we introduce the quantities
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 (2.9) D(r)= ii.\VMu\2dVM,
 Br

 (2.10) H(r) = I txu2dVMr.
 J dB,

 Here B, represents the geodesic ball in the metric g of radius r and center at the
 origin. By (2.1) Br coincides with the usual Euclidean ball. If we set b(r,Q) =
 |det(fe,7(r,0))|, and observe that Vg(r,0) = r"~Wb(r,Q), we can rewrite (2.10) as

 (2.11) H (r) = r"'1 I |x(r,0)M2(r,0)Vè(r, 0)d0
 M,

 For r G (0,1) we define what we call the generalized frequency of u as

 rD(r)
 (2.12) JV(r) = iftf(r)^0.

 W(r)

 The main result in this section is the following

 Theorem 2.1. Ifu 6 Hl 2(Bt ) is a nontrivial solution of (2.8), then there exists
 a positive constant C = C(n,A) such that

 (2.13) N(r) = exp(Cr)A(r)

 is a monotone nondecreasing function of r E (0,1).

 Proof. We start by considering N(r) = rD(r)/H(r). Differentiation gives

 (2.14) N'(r) = N(r)  D'(r) + 1 H'(r)
 D(r) r H(r)

 Therefore, the theorem will be proved if we can show that

 D'(r) I H'(r)
 (2.15) + > —C(n,A).

 D(r) r H(r)

 To this end we compute the derivatives H'(r) and D'(r). By (2.11) we obtain

 (2.16) H'(r) = H(r) + -^= ^ (piVb)u2dVdBr + 2 [x.uupdVdBr,
 r J sar Vb ôp JdBr

 where wp denotes radial differentiation, i.e., up = (VMu,x/p). Using (2.3), (2.6)
 and (2.7) we can rewrite (2.16) as

 (2.17) H'(r) —
 n - 1

 + 0(1)  H(r) + 2 \LUUpdVdBr,
 SB,

 where 0(1) denotes a function of (r,0) which is bounded in absolute value by a
 constant C = C(n,A). Next we observe that because of (2.8) we have
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 252 N. GAROFALO & F.-H. LIN

 (2.18) à\\M(\iVM(u2))dVM = 2 [i\VMu\2dVM. = 2f JBr 'Br

 On the other hand the divergence theorem gives

 (2.19) I divM(|xVM(« ))c/VM = 2 |xuupdVeBr.
 'dBr

 Using these observations, we can rewrite (2.17) as

 n - 1
 (2.20) H'(r) =  + 0(1)

 r

 We now turn to the computation of D'(r).

 H(r) + 2D(r).

 Step I. A radial deformation. For 0 < r, Ar < 1/2 fixed, we define the map
 w(t) = w(t\ r,Ar) : R" —* R+ by

 (2.21) w(t)(x) =

 t, if p(.x) < r

 1, if p(*) > r + Ar

 r + Ar - pOO pfx) - r
 t h , if r < pOc) < r + Ar

 Ar Ar

 where we recall that by (2.7) we have p(x) = distM(0,jc) = |x|. Now we define a
 map f(0 : R" R", for 0 < t < 1 + Ar/(r + Ar), by

 (2.22) = w(t)(x)x.

 It is easy to check that t(t) is bi-Lipschitz; therefore if for u G HX1{BX) we set
 u'(x) = then u' G HU2(Bx).

 Step II. First variation estimates. Since m is a solution of (2.8) we have

 (2.23) y/[M'] U = 0, dt

 where we have set

 (2.24) /[«'] = \i\VMu'\2dV, M

 B i

 = I (jl|Vmm'|2JVm + I (a|Vmh'|2</Vm + J |x| VMw'|2c/Vw J Bff J Br+\^\Brt J B\\Br+frr

 = /, + I2 + /3.

 Now

 (2.25) /3 = |x|VMu'\2dVM = \x\VMu\2dVM,
 JB\\Br+&r JB\\Br+&r
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 so that

 dl 3
 = 0.

 dt ,= i

 Next, we have

 (2.26) /, = ^\VMu'\2dVM

 (x(ïp,0)«p(p,0) —— d<dd p
 J0 Js'

 Vg(rp,0)

 +

 np,(fp,0)M9.(p,0)M6.(p,0)fciy(rp,0)fV^p,0¥0^p,
 where in the second term on the right-hand side of (2.26) we have used the sum
 mation convention and we have denoted by fey the entries of the matrix (fey)-1.
 We remark that by (2.7)

 d
 — |x(rp,0)
 di

 < Ap.

 Moreover, if we set 1 + e(p,0) = \/fe(p,0), we can write

 (2.27)  Vg(tp,0) = f V '[1 + e(/p,0)]

 fe'v(rp,0)Vg(tp,0) = f"-3p"-3[S,j + ë^(rp,0)]

 for certain ë))(rp,0). Because of (2.3), we have

 d
 — e(p,0)
 ôp

 ^ C(n,A),
 8

 — MP'0)
 5p

 (2.28)

 therefore (2.26) gives

 dL
 = (n - 2)D{r) + 0(r)D(r).

 s C(n,A),

 dix
 (2.29) -1

 dt  t= l

 In (2.29) 0(r) denotes a function of (r,0) whose absolute value is bounded by
 Cr, where C = C(n,A).

 Finally, we wish to estimate dl2/dt\,= l. To this end, we need to introduce some
 notation. We set

 y(0(p) = w(t)(x)p = p

 and

 r + Ar - p p-r
 t + ^

 A r A r

 d p(l - t) + t(r + Ar - p) + (p - r)
 h (t, p) = — y(t)(p) = .

 dp Ar
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 254 N. GAROFALO & F.-H. LIN

 Then

 (2.30) I2 = I v\VMu'\2dVs
 J Br+A r^Brt

 r+Ar

 + J J ^(7(O(p),e)/t2(p,O«p(p,e)V^(7(O(p),0¥0^(7Wp)
 /•r+Ar /•

 + J J iM-(7(O(p).0)«el(p,0K(p,0)ôy(7(O(p),0)V^(7(O(p),0¥0</(7(Op).

 Using expansions similar to (2.27) for Vg(7(t)(p),0) and

 b'J (7(O(p),0)V g(7(0(p) ,6)

 we have from (2.30)

 r + Ar - p r + Ar - 2p dl2
 (2.31) —2

 dt  = 1  >
 t= 1 J  Br+&r\Br

 Br+br^Br

 ((«- l) + 0(p))

 r + Ar — p r + Ar - 2p
 («-3) -(l + 0(p)) +

 UpdV m

 Ar Ar

 Ar Ar

 (|VM«| — Up)dV,

 + 0(l)\VMu\2dVM.
 J Br+fa\Br

 Now we let Ar —» 0+ in (2.31) obtaining

 (2.3) -j = 2r J |AMpû?Vaflr - r |x|VMM|2JVaßr.

 From (2.23), (2.25), (2.29) and (2.32) we finally obtain

 (2.33) rD'(r) - ((« - 2) + 0(r))D(r) = 2r \ui2pdV dBr.
 JdBr

 This formula is the basic tool in the proof of Theorem 2.1. By it and (2.20) we
 can finally estimate the term within brackets in (2.14). We have

 IxuldVdBr iLuupdV dBr
 J dB, J dB, D'(r) 1 H'(r)

 (2.34) + = 0(1)+ 2 2
 D{r) r H (r)

 \LUUpdV dBr pu dVdBr
 dB, J dB,

 >0(1)> -C(n,A).

 The second-to-the-last inequality in (2.34) is a consequence of Schwarz' inequal
 ity. (2.34) is what we need to complete the proof of the theorem. From it and
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 (2.14) it follows that exp(C(n,A)r)iV(r) = N(r) is a monotone nondecreasing func
 tion on (0,1).

 Remark. When A(x) = Identity, i.e., when L = A, then the computation of
 D'(r) can be carried out more directly by using a classical formula of Rellich. In
 fact, the radial deformation (2.21) in this case is equivalent to Rellich's formula.
 We will use Rellich's formula in Section 4 to study the frequency of Schrödinger
 operators.

 We now wish to derive a consequence of Theorem 2.1 that will be relevant
 for the applications in Section 3. Let L = div(A(x)V) be an elliptic operator in
 f1 D ßj satisfying (1.1) and (1.2). For n > 3 we define a Lipschitz metric on
 B\ C R", gij(x)dxi 0 dxj by setting

 (2.35) gij(x) = a»(jcXdetA),/("-2).
 In (2.35) a!' denote the entries of A(jc)~'. We have

 (2.36) Lu = 0 in Bt if and only if d\vM(VMu) = 0 in the metric given by (2.35).

 Letting (g'J(x)) = (gfx))^ and setting

 (2.37) r(xf = gij(f))xpCj, ti(x) = gk((x) — (x) — (x),
 oXfc dXg

 we introduce a new metric gij(x)dXi 0 dx} in ß, by defining

 (2.38) gij(x) = j] (x)gij(x).

 One easily verifies that is a Lipschitz function on Bt, whose Lipschitz con
 stant depends on the Lipschitz constant, T, of atj, see (1.1). Moreover, as proved
 in Section 3 of [AKS], in the intrinsic geodesic polar coordinates with pole at
 zero, the metric tensor glJdx, 0 dxt takes the form dr 0 dr + r2^(r,0)z/0, 0 <70;,
 where satisfy (2.2) and (2.3) with a A depending on T, X and n. In this new
 metric we can rewrite (2.36) as

 (2.39) diVû(\x(x)VûU(x)) = 0

 where p. is a Lipschitz function on ß, satisfying (2.6), (2.7) with Ct, C2 and A
 depending on T, X, n.
 By the above reductions and Theorem 2.1 we then obtain

 Theorem 2.2. Let Li be a connected open subset of R", n S: 3, such that
 fIDS,, and let L = div(A(x)V) be an elliptic operator on LI with A(x) satisfying
 (1.1) and (1.2). Then there exists a positive constant C = C(n,kf) such that, if
 N(r) is defined as in (2.12), relative to the metric given by (2.38), then

 (2.40) N(r) = exp(Cr)N(r) is monotone nondecreasing in r E (0,1).

 3. Ap weights and unique continuation. In this section we apply the results
 of Section 2 to provide the proofs of Theorems 1.1, 1.2, and 1.3. We begin with
 the
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 Proof of Theorem 1.3. Let jc0 E B{, the unit ball centered at the origin, and
 let Br(xq) and B^(x0) two concentric balls centered at x0, radii respectively R and
 2R, such that B^ix,,) C Bx. We wish to prove that (1.8) holds for BR(x0) and

 with a constant depending only on u, T, X and n. We are going to use
 Theorem 2.2. We recall that (2.40) holds relative to balls centered at the origin.
 However, it is clear that the same conclusion is true, with a uniform constant
 C = C(n,X,T), if we consider frequencies relative to balls centered at any point
 x0 6 Bi (we recall that we are assuming B2 C Cl). Hence, without loss of generality
 we may suppose that jc0 = 0, and we will write Br(x0) = Br, for any r E (0,1).
 If p. is the Lipschitz function in (2.39) we set as in Theorem 2.1

 H(r) = iiuzdVdB,
 I öBr

 From (2.20) we get

 / H(r)\ _ exp(-Cr) (3.1) =0(1) + 2 N(r)-£- ,

 where we have used the definition (2.13) of the modified frequency, and C =
 C(u,\,T) is the constant appearing in (2.40). Now for any R £ (0,1) such that
 2R < 1 we integrate (3.1) between R and 2R. Using (2.40) we obtain

 (H(2R) ,\
 (3.2) log(—^-2"-') <C7? + 21og2N(l).
 Exponentiating (3.2) yields

 (3.3) H(2R) < H(R)[2"-1 exp(C + 2 log 2N(1))].

 Integrating (3.3) in R gives

 (3.4) I IxM2dVß2Ä < C I \LUldVBR.
 J Ü2R J Br

 Finally, using the bounds (2.6) on p., we get from (3.4)

 (3.5) I u dx s C I u dx
 ' Btr J Br

 which is what we wanted to prove. The constant C in (3.5) has the desired de
 pendence.

 We now turn to the

 Proof of Theorem 1.2. Part (i). Without loss of generality we may assume
 that u vanishes of infinite order at x0 = 0, i.e., (1.7) holds for all R ^ R0. We
 wish to show that u = 0 in BRo. The following argument is known, see, e.g., [G],
 p. 135. We reproduce it for the sake of completeness. By (3.5) we obtain
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 (3.6) I u2dx < Ck u2dx = Ck\BRo2-k\a 1 I uzdx
 Br0 JBR02~k \^Ro2 *1 Jbr02~I<

 with a > 0 to be chosen. Now we let a be such that C2~na = 1, where C is the
 constant in (3.6). This yields

 (3.7) I u2dx ^ (co„/?S)a : I u2dx~*0 ask—*™
 Jß/iQ I^?o2 *1 JBnQ2-k

 because of (1.7).

 Part (ii). The proof of this part relies on (ii) of Theorem 1.1, which we still
 must prove. However, let us assume that Theorem 1.1 is true. Hence, if m is a
 nonconstant solution of (1.3) a q > 1 and a B > 0 exist (depending only on u,
 T, X. and n) such that (1.5) holds. By the results in [CF] there exists a B' > 0,
 depending on q and B in (1.5), such that for any BR, such that B1R C B{,

 (3.8) I \Vu\dx < B' \Vu\dx.
 J Bor JBr

 It is now clear that, since we are assuming u # const., |Vw| cannot vanish of
 infinite order at any point x0 E B,. This completes the proof of Theorem 1.2,
 modulo the

 Proof of Theorem 1.1. To begin with, we recall a well-known local estimate
 that holds for solutions of even more general equations than (1.3) (see [M] for
 instance): there exists a constant y = y(\,n) such that for any ball BR such that
 ßy? C fi, we have

 (3.9) sup u2 ^ y : ; j u2dx.
 \Btx\ K

 On the other hand, for every 8 > 0 we trivially have

 / 1 f \1/(1+5) (3.10) (-—7 u2ii+b)dxI < sup u2.
 \|ß«l Jfls / B„

 By (3.9), (3.10) and (1.8) of Theorem 1.3 we obtain for every 8 > 0

 (3.11) (-Î- f U2(l+b)dx) SCr-t-j f U2dx, \N JSs / K\ JBk
 i.e., u2 satisfies a reverse Holder inequality. The results in [CF] assure the ex
 istence of some r 6 (l,00) and A' > 0 such that
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 for every ball BR, with c B\- A' and r depend on C in (3.11) and the choice
 of a 8 > 0. Taking p = (r + l)/2 > 1, and A = \/X' in (3.12), by Schwarz'
 inequality we obtain (1.4).

 Part (ii). Let BR be a ball in Bu such that B2K C S,. If we set

 1 f
 UR = : I udx,

 PäI Jbr

 then u - uR too is a solution to (1.3) in 17. The assumption u ^ const., and the
 maximum principle, imply that

 IU - UR|2'
 dB](Xo)

 (3.13) inf I \u - uR\ d= |x > 0,
 0<ff<l

 where we have denoted with B,(x0) the ball of radius 1 and center at xn. (3.13)
 assures that in applying Theorem 1.3 to u - uR the constant in (1.8), which in
 volves the modified frequency (2.13) of u - uR, is independent of uR, for any
 Br C B1r C B\. Therefore, by Theorem 1.3 we obtain

 (3.14) Iu - uRfdx —CI |m - uR\2dx,
 J Btr J Br

 where C has the stated dependence. Now Caccioppoli's inequality (see [M]) ap
 plied to m - gives

 (3.15) \Vu\2dx < C/R2\ |m - Mr|2,
 JBr JB2r

 with a C = C(\,n). On the other hand, Poincaré's inequality yields

 (3.16) 2- f \u - Mr|2 < CR2(r^~ f \Vufdx P*l JBr VP*I JBr

 with s = 2n/(n + 2) < 2. By (3.15), (3.14) and (3.16) we finally obtain

 (3',7) (^liv"|,&)'sc(^liv"^
 i.e., a reverse Holder inequality for |V«|J. To obtain (1.5) from (3.17) now re
 quires an argument completely similar to the one given for \u\ in the proof of Part
 (i), and we omit the details. The proof is completed.

 Remark. We wish to emphasize that (3.17) implies higher integrability of
 |V«|. This is a consequence of the self-improving feature {Ap => Ap^t for some
 e > 0) that is inherent to Ap weights, see [CF]. For an interesting account of the
 connection between reverse Holder inequalities and LP properties of solutions of
 elliptic equations and systems, cf. [G],
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 4. Unique continuation for a class of Schrödinger operators. The purpose
 of this section is to show that the ideas of Sections 2 and 3 can be applied to
 study unique continuation for solutions to equations with singular lower order
 terms. Let/:R" —» R be a bounded function homogeneous of degree zero, i.e.,
 if co = x/\x\, x ¥" 0, we have

 (4.1) f(x) = /(co), and |/(co)| < C for all co G S"-1.

 We consider the Schrödinger operator

 /
 (4.2) H = -A + .

 M

 Our aim is to provide a simple proof of the following

 Theorem 4.1. Let u 6 H\£(Bx) be a solution in Bx ofHu = 0. Then u cannot
 vanish of infinite order at one point x0 G Bu unless u = 0 in B,.

 The proof of the theorem will be given below. As mentioned in Section 1, since
 f/\x\2 ÇÉ L[({2(R") , and moreover we do not require any restriction on the size of
 /, Theorem 4.1 is neither included in the general result in [JK], nor in the sharper
 result in [S]. We mention that a simple proof of the strong unique continuation
 property for nonnegative solutions of general Schrödinger operators with poten
 tials V G T"0(2=c has been given in [CG].

 The following theorem will be needed as a lemma to Theorem 4.1. However,
 it has an interest in its own right since it provides a new proof of the results in
 [Ca] and [Mu] that does not use Carleman estimates.

 Theorem 4.2. Let u G H]02(B, ) be a solution to the equation

 (4.3) -Am + Vu = 0 in Bu

 where V G If u vanishes of infinite order at x0 G Bt, then u = 0 in Bx.

 Proof. Without loss of generality we can assume that x0 = 0, and prove that
 there exists a small ball centered at the origin, Bt, such that u = 0 in Bt. Following
 the ideas of Section 3, for every r G (0,1) we define the quantities

 (4.4) H(r) = u2dH n-1, I(r) = (|Vm|2 + Vu2)dx.
 J dB r J Br

 We remark that since m is a solution of (4.3), u minimizes I(r). Moreover, since
 A (it2) = 2(|Vm|2 4- Vm2), the divergence theorem gives

 (4.5) I(r)= uupdHn
 ldBr

 where wp = (Vm,x/p), |x| = p. Differentiating H(r) we obtain

 n — 1 f n — 1
 (4.6) H'(r) = H(r) + 2 uupdHn= H(r) + 2/(r).
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 We now define the following frequency function

 rl(r)
 (4.7) N(r) = 0 < r < 1.

 H{r)

 Following the arguments in the proof of Theorem 1.3, it is clear that if we could
 show that there exists an r0 E (0,1) such that N E L"(0,ro), then we would be
 done. In fact, from this and equation (4.6) we would obtain the doubling condition
 for H(r) and hence, by integration, a solid doubling condition like (1.8), at least
 for small r's. Then u = 0 in Bro would follow.
 In order to proceed we compute the derivative of I(r). Since we are dealing

 with the Euclidean Laplacian we take an approach that, apparently different from
 the radial deformation of Theorem 2.1, is in fact equivalent to it: we use a classical
 identity due to Rellich. The use of such an identity was suggested to us by Eugene
 Fabes. We then have

 (4.8) I'(r) = \Vu\2dHn.t + Vu2dHn_
 dBr

 {x\Vu\2,x/r)dHn-x + I Vu2dHn
 dBr J dBr

 = - I |Vu|2<£t + - V I XiUXjuXjXjdx + I Vu:dH„_u
 r JBr Y i,j= 1 Jflr JSBr

 the last equality being a consequence of the divergence theorem. Integrating
 by parts the second term in the right-hand side of (4.8) and using the fact that
 Ah = Vu gives

 (4.9) I'(r) = -—- \\u\2dx + 2 u;dHn P"

 dBr

 + I Vu"dHn_ I I (x,Vu)Vudx.
 JdBr r JBr

 (4.9) can be rewritten

 (4.10) = - -/(r) + 2 I u2dHn.l+ I VuldH
 dBr

 ^ 2 I 2
 Vu2dx I (xyu)Vudx.

 Br

 We now

 Claim. There exists an r0 E (0,1), depending on ||V||,.--, such that for every
 r E (0,r0) we have
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 (4.11) j u~dx<r I udH„-{.
 Proof of the claim. For every r E (0,1) an integration by parts gives

 (4.12) I A(n2)(r - |*|2)dx - 2r I - 2n I u2dx.
 JBr JdBr J Br

 On the other hand

 (4.13) A(w2)(r2 - |*fl)dx = 2 (|Vm|2 + Vu2)(r2 - \x\2)dx.
 J Br J Br

 (4.12) and (4.13) yield

 (4.14) rl u2dHn.{>\ (n + V(r2 - \x\2))u2dx.
 JdBr JBr

 We now set IV^* = ||VHi,*(fl > and choose r0 6 (0,1/2) such that

 (4,5)

 For all r G (0,r0) and |x| < r we then have

 (4.16) n + V(r2 - |x|2) > n - HvH^r2 > n - ||V||L^ > 1.

 From (4.16) and (4.14), (4.11) follows.

 Next we observe that without loss of generality that we can assume that there
 exists a small r£ (0,1) such that

 (4.17) H(r)¥"0 for any r G (0,r).

 Restricting, if needed, the interval (0,r), we can assume that f — r0, where r0 is
 determined by (4.15). It follows that N(r) is continuous on (0,r0). Therefore, if
 we set

 (4.18) = {r G (0,r„) : N(r) > max (TV(r0), 1)}

 by a well-known real variable decomposition, see, e.g., [N], p. 48, we have

 (4.19) a0= U (aj,bj), aj'bj & fir„.
 i= I

 Now we compute N'(r). By (4.6) and (4.10) we obtain

 (4.20) N'(r) = N(r)  I'(r) | 1 H'(r)
 I(r) r H(r)
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 J dBr J dBr

 = N{M 2 2 — +

 ( W-^fv JôBr r JBr
 u2p I uUp I Vu2 J Vu2 J {x,Vu)Vu

 dBr

 Hr)
 u

 where in the above integrals we have omitted the measures dH„ _, and dx for the
 sake of brevity. Now we pick an arbitrary interval (ak,bJt) entering in (4.19) and
 estimate N'(r) on it in a uniform fashion. Since N(r) > 1 for r E (ajo,bjo), recalling
 (4.5) and using Schwarz' inequality we see that on (ajo,bjo)

 "p uup
 )sBr JeBr

 (4.21) — 7 > 0.
 u2

 We now look at the last ratio in (4.20).
 In what follows we will denote with ||Vj|L* the LT norm of V on Bro. Since

 N(r) > 1 yields H(r)/I(r) < r we have

 (4.22)

 By claim (4.11) we get

 Vu2
 SBr

 1(f)  — Ilvll,^ < HI l(r)

 (4.23)

 Finally,

 (4.24)

 n ~ 2 I Vu2
 Br

 2

 r jb,

 I(r)

 (x,Vu)Vu

 f J Br

 ~ " IM|t- s (b - 2)r||V||t>.
 r l(r)

 I (r)
 — 2

 |V«||«|
 Br

 11L* // \ I(r)

 (|Vm|2 + Vu2) - l Vu2 + J u
 Br JBr

 lit' 77T
 /(r)

 < 2||V|U-<1 + ||V||^r2 + r).

 From (4.20), (4.21), (4.22), (4.23) and (4.24) we get the existence of a constant
 A = A(/t,||V||i«,r0) such that for every r £ (ajo,bjo)

This content downloaded from 205.175.106.93 on Mon, 26 Aug 2019 20:36:05 UTC
All use subject to https://about.jstor.org/terms



 UNIQUE CONTINUATION  263

 (4.25) N'(r)>-N(r)A.

 (4.25) implies that

 (4.26) exp (Ar)N(r) is monotone increasing on (ah,bjo).

 Since A does not depend on the chosen (ajo,bJ(l) and

 exp (Ar)N(r) < exp (AbJa)N(bj0) < exp (Ar0) max (N(r0),l)

 we conclude that exp (Ar)N(r), hence N(r) is bounded on (0,ro). From (4.6), as
 in the proof of Theorem 1.3, we conclude that u satisfies (3.5) for all balls BR
 such that 2R < r0. This finishes the proof of the theorem.

 We are now ready to give the

 Proof of Theorem 4.1. Since for x ^ 0 we have V = /(«)/|x|2 E
 LZc(ß,\{0|), strong unique continuation at any point x0 # 0 follows by Theorem
 4.2. Therefore, we only need to show that if u vanishes of infinite order at x =
 0 then u = 0 in Bt. We set for r E (0,1)

 (4.27) H(r) = I u2dHn-t, /(r) = J ^|Vu|2 + u^jdx.

 A computation similar to those in (4.8) and (4.9) gives

 (4.28) /'(r) = ^ + 2 u\dHn^x + ^ u2dH r Jb, JftBr JilBr W

 ^ (x,V(u2)) yjt dx W

 Integrating by parts in the last term on the right-hand side of (4.28), recalling that
 df/dr = 0, yields

 V" 1 f 2 /(«) ,
 (4.29) *.(M\ -j-jTdx i=l r J Br W

 —ikl +
 i=i ' J BBr Fl i=i r Jß, V Fl / .t,

 Now since (*,/|jc|\ = (n - 2)/|x|2 we get from (4.28) and (4.29)

 n — 2 f , (4.30) /'(r) = /(r) + 2 I m  p •
 SB.

 Formula (4.30) is remarkably simple if compared, for example, to (4.9). If we
 set N(r) = rI(r)/H(r), and we use (4.6), we obtain
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 (4.31) N'(r) = N(r)< 2

 r  f ' 1
 f

 p
 1

 • 'dBr J  dBr
 I 0

 I
 <■>

 r

 I  UUp  J v J dBr J 'dB,

 u~

 Since N(r) always has the same sign as I(r) = fdBr uupdHn-,, from (4.31) and
 Schwarz' inequality we have

 (4.32) N\r)> 0 fora.e. r G (0,1).

 Therefore N(r) is an increasing function of r and from this we conclude as in
 Theorem 1.3 that (3.5) holds for every couple of concentric balls, BR and B1R,
 centered at x = 0 and such that 2R < 1. This immediately implies strong unique
 continuation.

 We close the proof of the theorem with a remark. Not obvious a priori, a by
 product of the monotonicity (4.32) is that

 (4.33) //(r) # 0 for every r G (0,1).

 To see this, we observe that (4.30) implies that

 I(r)
 (4.34) is monotone increasing on (0,1).

 Therefore, since u ^ 0, there exists at most one r0 G (0,1) such that H(r0) = 0.
 In fact, if r, G (0,1) were another value for which H{rx) = 0, we would have

 u\BBr — u\aBri = 0 hence 7(r0) = /(r,) = 0, which contradicts u ^0. By (4.6) we

 get

 / H(r)\ 2N(l)
 (4.35) (log7^j
 where we have set N(l) = sup N(r). Integrating (4.35) gives

 (0.1)

 H(t)\ '
 log — ) dt^K

 'U

 hence

 H(r) H(ro)
 (4.36) log ~~^7" - log iTT" — K'

 r ro

 where //(ro) = lim H{r). (4.36) implies H{r^) # 0. This in turn gives that (4.32)
 /•-»ro

 actually holds everywhere on (0,1).

 We wish to end this section with
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 A counterexample. Our point here is to show that the inverse square potential
 V{x) = c/|jc|2, c G R, plays the role of a threshold, among all potentials of the
 type c/|;t|m, m > 0, for unique continuation to hold. In fact, one can use the same
 ideas of Theorems 4.1 and 4.2 to show unique continuation for -A + c|jc|~m,
 when 0 < m < 2. Note that for 0 < m < 2, \x\'m G LpXoc for some p > n/2,
 therefore, see also [JK]. We now consider the Schrödinger equation

 (4.37) Hu = -Am + - ^2+e u = 0 biß,,
 and we suppose that the dimension n of the ambient space is such that

 n — 2
 (4.38) £ Z+.

 E

 If we look for radial soutions u(x) = m(|jc|) of (4.37) we are led to consider the
 ode

 (4.39) r2u"(r) + (n - l)ru'(r) - cr~Eu(r) = 0, 0 < r < 1.

 (4.39) is a Bessel equation. If we have the general equation

 (4.40) zV(z) + (1 - 2a)zu'(z) + [ßYz2^ + (a2 - v2y2)]u(z) = 0,

 then for v £ Z the general solution of (4.40) is given by

 (4.41) w(z) = za[C |/„(ßz7) + C27_„(ßz7)],

 C|, C2 being arbitrary complex numbers, see [W], Comparison of (4.39) with
 (4.40) gives

 n — 2 , n - 2
 (4.42) a = , y = -e/2, v = ,

 2 E

 and, if we take c > 0 in (4.37),

 2 Vc
 (4.43) ß = / .

 Because of (4.38) the general solution of (4.39) is therefore given by

 (4.44) u(x) = \x\~'"~2)/2
 V\Tc \ I 2 Vc

 CiJA e™/2 W-/2 + C2 em'2 W"e/2

 CI;C2 G C arbitrary. If now /„ denotes the modified Bessel function of imaginary
 argument by the formula (see [W])

 (4.45) Jv(em/2z) = e™'nIv(z), -tt < arg z < tt/2,

 and (4.44), we get
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 (4.46) u(x) = 1^1 = |v|-C-2)/2  C i exp
 (2 Vc,

 + C2 exp
 i-n / n — 2

 2 V e

 2Vc
 ^ — («—2)/e I W 6/2

 Denoting by Kv the modified Bessel function of the third kind, using the formula
 ([W])

 it - e'im'nlv{2) „ ^
 Kv(z) = ; , -it < arg z < it/2,

 2 sin ttv

 and choosing C,, C2 in (4.46) such that

 iv (n — 2

 C\ exp
 /it ( n — 2

 2 \ e

 -exp
 ■n

 2 \ e

 2 ( n — 2
 sin it

 C2 exp
 fir / n — 2

 2 \ e

 exp
 IT

 m In — 2 '

 2 V e

 2 ( n — 2
 sin it

 we obtain from (4.46)

 (4.47) u(x) = |x| (n 2)/2K^2)J W 6/2
 2Vc

 Now we use the asymptotic behavior of Kv for large positive x, i.e.,

 (4.48) Kv(x) « ^ x~,/2e~" asx^> + <*>.

 By (4.47) it is then clear that

 nyTc,
 '(n-2)/el u(x) = \x\-<n-2)/2Kin-2)/c( \x\~*/:

 is a nontrivial solution of (4.37) which, by (4.48), vanishes of infinite order at
 x = 0.
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