
Mathematics Department, Princeton University
 

 
Nodal sets of Laplace eigenfunctions: proof of Nadirashvili's conjecture and of the lower
bound in Yau's conjecture
Author(s): Alexander Logunov
Source: Annals of Mathematics, SECOND SERIES, Vol. 187, No. 1 (January, 2018), pp. 241-
262
Published by: Mathematics Department, Princeton University
Stable URL: https://www.jstor.org/stable/26395710
Accessed: 10-04-2019 23:32 UTC

 
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide

range of content in a trusted digital archive. We use information technology and tools to increase productivity and

facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

 

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

https://about.jstor.org/terms

Mathematics Department, Princeton University is collaborating with JSTOR to digitize,
preserve and extend access to Annals of Mathematics

This content downloaded from 205.175.106.141 on Wed, 10 Apr 2019 23:32:00 UTC
All use subject to https://about.jstor.org/terms



 Annals of Mathematics 187 (2018), 241-262
 https://doi.Org/10.4007/annals.2018.187.l.5

 Nodal sets of Laplace eigenfunctions:
 proof of Nadirashvili's conjecture and
 of the lower bound in Yau's conjecture

 By Alexander Logunov

 Abstract

 Let u be a harmonic function in the unit ball B(0,1) C Rn, n > 3,
 such that tt(0) = 0. Nadirashvili conjectured that there exists a positive
 constant c, depending on the dimension n only, such that

 Hn~1({u = 0}nB) > c.
 We prove Nadirashvili's conjecture as well as its counterpart on C°°-smooth
 Riemannian manifolds. The latter yields the lower bound in Yau's conjec
 ture. Namely, we show that for any compact C°°-smooth Riemannian
 manifold M (without boundary) of dimension n, there exists c > 0 such
 that for any Laplace eigenfunction (fix on M, which corresponds to the
 eigenvalue A, the following inequality holds: cVA <

 1. Introduction.

 Let M be a C°° smooth Riemannian manifold (with or without bound
 ary) of dimension n. Let B be a geodesic ball on M with radius 1. Assume
 A > 0. Consider any solution of the equation Au + Xu = 0 in B (the boundary
 conditions for u do not matter), and denote the zero set of u by Zu. We prove
 the following result:

 Theorem 1.1. There exist c > 0 and Ao, depending on M and B only,
 such that if A > Ao, then

 cVX < Hn"l{Zu^B).

 We prove a similar result for harmonic functions, which was conjectured
 by Nadirashvili ([12]):

 Keywords: Harmonic functions, Laplace eigenfunctions, nodal sets, Yau's conjecture, dou
 bling index, frequency
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 © 2018 Department of Mathematics, Princeton University.
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 242  ALEXANDER LOGUNOV

 Theorem 1.2. There exists c > 0, depending on M and B only, such
 that for any harmonic function h on B that vanishes at the center of B, the
 following estimate holds:

 c<Hn-\zhr\B).

 As an immediate corollary from Theorem 1.2 we obtain that if h is a non
 constant harmonic function in M3, then the zero set of h has an infinite area.
 Apparently, this is also a new result.

 Theorems 1.1 and 1.2 are related to each other by a standard trick that
 allows us to pass from Laplace eigenfunctions to harmonic functions. If u
 satisfies Au + Xu = 0 on M, then one can consider the harmonic function

 h(x, t) = u(x) exp(V~\t)

 on the product manifold MxR. The zero set of h and the zero set of u are
 related by

 Zh = Zux R.

 Then Theorem 1.1 will follow in a straightforward way from the ^-scaled
 version of Theorem 1.2 and the fact that Zu is dense in B. The latter

 fact, which is well known, is the corollary of the Harnack inequality for har
 monic functions. For the reader's convenience, we present the proof of this
 fact in Section 8, where we also deduce Theorem 1.1 from the scaled version
 of Theorem 1.2.

 Most of this paper is devoted to the proof of Nadirashvili's conjecture.
 Nadirashvili's conjecture was motivated by the question of Yau, who con

 jectured that if M is a compact C°°-smooth Riemannian manifold with no
 boundary, then there exist c,C > 0, depending on M only, such that the
 Laplace eigenfunctions (p\ on M (ip\ corresponds to the eigenvalue A) satisfy

 cVx < Hn~l(yA = 0) < Cy/X.

 The lower bound for Yau's conjecture in dimension 2, which is not difficult,
 was proved by Briining and also by Yau. In dimension n > 3 the lower bound
 for Yau's conjecture follows now from Theorem 1.1.

 For the case of real-analytic metrics, the Yau conjecture was proved by
 Donnelly and Fefferman [3]. Theorems 1.1 and 1.2 do not follow from the
 Donnelly-Fefferman argument and are new in the case M = IR", n > 3, en
 dowed with the standard Euclidean metric. Roughly speaking, Nadirashvili's
 conjecture implies the lower bound for Yau's conjecture and gives additional
 information on small scales. The assumption of real analyticity of the metric
 seems to be of no help for the question of Nadirashvili, but it was exploited
 by Donnelly and Fefferman to establish the lower and upper bounds in Yau's
 conjecture.
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 Concerning the upper bounds for Yau's conjecture without real-analyticity
 assumptions, Donnelly and Fefferman ([4]) proved that in dimension n = 2 the
 following estimate holds:

 Hl(u = 0) < CA3/4.

 Recently this upper bound was refined to CA3/4-£ in [10], which we advise be
 read before this paper.

 In higher dimensions Hardt and Simon ([7]) showed that

 Hn'\u = 0) < CACx/X.

 Recently an upper bound with polynomial growth was obtained in [9]:

 Hn~x{u = 0) < C\G.

 In this paper we use techniques of propagation of smallness developed in
 [10] and [9].

 We refer to [14] and [12] for the interesting conjectures on Laplace eigen
 functions and harmonic functions. See also [1], [2], [13], [3] for the previous
 results on the lower bounds. This paper is self contained with the exception
 of Theorem 5.1, which was borrowed from [9].

 Acknowledgments. This work was started in collaboration with Eugenia
 Malinnikova who suggested to apply the combinatorial approach to nodal sets
 of Laplace eigenfunctions. Her role in this work is no less than the author's one.
 Unfortunately, she refused to be a coauthor of this paper. On various stages of
 the work I discussed it with with Lev Buhovsky and Mikhail Sodin. Lev and
 Mikhail also read the first draft of this paper and made many suggestions and
 comments. I would like to mention that it was Dmitry Chelkak from whom
 I heard for the first time about the question on the area of the zero set of a
 harmonic function in M3. I thank all of them.

 This work was started while the author was visiting NTNU, continued at
 the Chebyshev Laboratory (SPBSU) and finished at TAU. The final version of
 the paper was completed at the Institute for Advanced Study. I am grateful
 to these institutions for their hospitality and for great working conditions.

 The author was supported in part by ERC Advanced Grant 692616, ISF
 Grants 1380/13, 382/15 and by a Schmidt Fellowship at the Institute for Ad
 vanced Study.

 2. Almost monotonicity of the frequency

 Given a point O on a Riemannian manifold M, let us consider normal
 coordinates with center at O. We will identify a neighborhood of O on M with
 a neighborhood of the origin in the Euclidean space. Now, we have two metrics:
 the Euclidean metric, which we will denote by d(x,y), and the Riemannian
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 244  ALEXANDER LOGUNOV

 metric dg(x,y). The symbol B(x,r) will denote the ball with center at x and
 radius r in Euclidean metric, while Bg(x,r) is used for the geodesic ball with
 respect to g. The radius r will always be smaller than the injectivity radius.
 Due to the choice of normal coordinates for any e > 0, there is a sufficiently
 small Ro = Ro(s, M,g, O) > 0 such that

 (1>

 for any two distinct points x,y in Bg(0, Ro). We will always assume that Rq
 is sufficiently small. In particular, we assume that (1) holds with e = 1/2.

 Throughout the paper the words "cube" and "box" (hyperrectangle) will
 be used in the standard Euclidean sense. The reason why we need two metrics,
 but not one, is because we will frequently partition cubes into smaller cubes,
 and the combinatorial geometry ideas are easier to describe in Rn than on a
 manifold. We kindly advise the reader to think that M is Mn, to throw away
 half of the used notations, and to remove the e error term in the monotonicity
 property for the frequency function defined below.

 Let u be a harmonic function on M. Given a ball Bg(x, r). define the
 function

 H(x,r)= J  I u\2dSr

 9Bg(x,r)

 where Sr is the surface measure on dBg(x, r).
 We will use a slightly non-standard definition of the frequency function:

 rH'(x,r)

 Our definition is slightly different from the one in [6], [5], and [8]; in particular,
 in the case of ordinary harmonic functions in Mn we do not normalize H(r) by
 the total surface area |5r|. Sometimes we will specify the dependence of (i and
 H on u and write Hu(x,r) and /3u(x,r). The frequency is almost monotonic
 in the following sense:

 For any e > 0, there exists Ro > 0 such that if n < < -Ro and
 dg(x,0) < Rq, then

 P{x,n) < (3(x, r2)(l + e).
 See also Remark (3) to Theorem 2.2 in [11].

 It follows directly from the definition that

 (2) H(x,r2)/H(x,ri) = exp ^2 J /3(x,r)dlogr
 and by the almost monotonicity property that

 /ra\2P(x,r1)/(l+e) H(x,r2) (r2 X^O^Xl+e)
 (3} - H(^j - V^J
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 3. A lemma on monotonic functions

 Lemma 3.1. Let f be a non-negative, monotonic and non-decreasing func
 tion on the interval [a, b]. Assume that f > e on this interval. Then there exist

 a point x € [a, g^) and N > e such that

 (4) N < f{t) < eN

 for anyte(x-^^,x + ^^)<z[a,b].
 Proof. Without loss of generality we can assume a = 0, b = 1. Define a

 sequence of numbers Xi G [0,1) such that x\ = 0 and x,+1 = x, + 10iog2 j(x.)
 as long as Xi+1 < 1/2. The sequence might be finite. Assume that (4) fails
 for x = Xt+12+Xt an<l N = f(xi). Then /(xj+i) > ef(xi). Assuming this for

 all such x, we obtain /(xj) > e\ Hence x^i — X{ = 10iOg2y(a.) — 1^2 • Since
 ]CiSl < 1 /2, we see that Xi < 1/2 for all integers i and f{xi) < /(1/2)
 while f(xi) —> 00 as i —» 00. □

 We want to apply Lemma 3.1 to a modified frequency function:

 P(p,r) := sup P(p,t).
 te(0,r]

 We note that ft is monotonic and /? and /3 are comparable due to almost
 monotonicity of the frequency:

 (5) /3(p, r) < 0(p, r) < (1 + e)/5(p, r),

 if Bg(p, r) C Bg(0, Rq), where Rq = Ro(s, O, M, g). Hereafter we will work in
 a small neighborhood of O and always assume that (5) holds with e = 1.

 Lemma 3.2. Consider a ball Bg(p,2r) C Bg(0,Ro), and assume that
 (3(p,r/2) > 10. Then there exist s £ [r, |r) and N > 5 such that

 (6) N < j3(p, t) < 2eN

 for any t € (s(l - 1000^ ^, s( 1 +

 Proof. Indeed, we can apply Lemma 3.1 for /3(p, t) on [r, 2r) and find such
 s and /V that

 2iV < < 2eiV

 f°r t G (S-201og^(2iV)'S+201ogV))- By (5) WG ^ ^ ^ f°r 1
 on the same interval.
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 246  ALEXANDER LOGUNOV

 Since /?(p, r/2) > 10, we have 2N > 10. Recall that s € [r, 2r). These two
 observations imply

 s11 ! 91 1+
 1000 log2 NJ \ 1000 log2 N

 c (s "57 ;>s + T7 tV D V 20 log2 (2 N) 20 log2 (2 N) J

 4. Behavior near the maximum

 In this section we study the behavior of a harmonic function in the spheri

 cal layer of width ~ log2 N from Lemma 3.2, where the frequency is comparable
 to N. We will consider a sphere within this spherical layer and collect several
 estimates for growth of u near the point, where the maximum is attained on
 that sphere.

 The same notation as in Lemma 3.2 is used here: we consider a ball

 B(p,2r) C B(0,Rq) with /3(p, r/2) > 10 and a number s G [r, 2r) such that
 the following holds: For any t in the interval

 1-T-Vsf1 + log2N) V KMX)log2 TV// 7" V V 1000 log
 the frequency is estimated by N < /3(p,t) < 2eN. We will always assume that
 N is larger than 5.

 By c, ci, C, Ci, C2,... we will denote positive constants that depend on
 M, g, n, O, Rq only. These constants are allowed to vary from line to line.

 Consider the function H(p,t) = u2. By (2) and (6) we have

 m ih/hf < < ((2/ti)J"v

 for any t\ < in I.
 Consider a point x on dBg(p, s) such that the maximum of |?i| on Bg(p, s)

 is attained at x, and define K = |m(x)|. Let us fix numbers

 (8) A = 106,6 £ [^j^ioo N, Alog2 S~s = s(! - s<5 = S(1 + 5)
 Note that < s < s$ and <5 < 1/106.

 Lemma 4.1. There exist c > 0 and C > 0, depending on M, g,n,0, Ro
 only, such that

 (9) sup M < CK2^cSN,
 Bg{p,S-S)

 (10) sup M < CK2csn.
 Bg(p,Ss)
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 Proof. We will prove only (9); the same argument works for the second
 inequality (10).

 By the standard estimate of L2-norm of a function, by L°°-norm and by
 (7) we have

 K2 > Cxs'n^H{V,s) > ClS-n+1/f(p,5_5/2)(l + 5/2)2N.

 We need an estimate that compares L2-norm of a harmonic function on the
 boundary of a ball and L2-norm in the ball:

 ?H(p,s^5/2) = s \u\2 >Ci [ \u\
 JdB„(v.s-*,-A JB,

 2

 • ■ , |U| •
 ' dBg(p,s_S/2> JBg{p,s_s/2)

 Let x be a point on dBg(p, ss), where the maximum is attained. Define
 K = \u(x)\. Since the volume \Bg(x, |s)| > C^iSs)71, we have

 [ \u\2 > / \u\2 > C2(Js)n-/ \u jB„ (v,s_x/o) JB„(xAs) Je
 2

 rtti
 8 , Bg(p,S-s/2) JBg{x, |s) JBg(x,^s)

 One can estimate the value of a harmonic function u in the center of a

 ball by a constant multiple of the average of |r/,| over the ball, so

 / M2>(/ M)2 > c3\u\2{x) = c3k2.
 JBg(x,^s) JBg(X,^s)

 Combining the estimates above one has

 (11) K2 > C4Sn{ 1 + 5/2)2NK2.
 Note that log(l + 6/2) > 5/4 for S G (0,1/106), so

 (1 + 5/2)2NSn > exp(N5/2 + nlog<5) = exp(N5/4)exp(7V5/4 + nlog<5).

 Using that 5 £ Uiog^iv' AtoPlv^ is easy to show that

 C5 + NS/4 + n log <5 > 0

 for sufficiently large C5 = C$(n). Thus K2 > exp(N5/A)K2. □

 Now, we can estimate the doubling index near x. Define A/*(x, r) by

 sup |u|
 2Af(x,r) = Bg(x»

 sup |tt|
 Bg(x,r)

 One can estimate the growth of a harmonic function in terms of the doubling
 index. For any e, there exist Rq > 0 and C > 0 such that for any positive
 numbers ri,r2 with 2r\ < r2 and Bg(x, r2) C Bg{0, R0), the following version
 of the logarithmic convexity property holds (see [9]):

 (12) (rA^^-c < suPgg(^^2) M <
 ~ supB (Xin)|u| - \ri/
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 248  ALEXANDER LOGUNOV

 In particular, the doubling index is almost monotonic in the following sense:

 Af(x, ri)(l — e) — C < Af(x, r?)(\ + e) + C.

 Lemma 4.2. There exists C = C(M,g,n,0,Ro) > 0 such that

 (13) sup |u| < K2csn+c,
 Bg(x,6s)

 and for any x with d(x, x) < |s,

 (14) Af{x, -s) < CSN + C,

 (15) sup |u| > K2~CSNI°SN~C.
 B9(x>wk)

 Proof. The first estimate (13) immediately follows from (10) since

 Bg(x, 5s) C Bg(p, s(l + (5)).

 To establish (14) we note that

 sup M sup |«|
 2^(2,1«) — B9^x'5s/2) < Bg(x,5s) < ^CSN+C

 sup |u| — K
 Bg(x,6s/4)

 It remains to obtain (15). We will use (14) and almost monotonicity (12) of
 the doubling index:

 sup |M|
 Bg (a:,<5s/4)

 sup |li|
 Bg(x> iSTyO

 < (40Ar)ClA/'^'!s)+c,i < 2C,SNlogN+C2loSN < 2c3snlogn+c3_

 In the last inequality we used that 5 € [^-j—100 N, —277]- Since sup |u| >
 °s °g Bg(x,Ss/4)

 |tt|(x) = K, the proof of (15) will be completed if we take C = C3. □

 5. Number of cubes with big doubling index

 Given a cube Q, we will denote

 sup |u|
 Bg(x,10n-r)

 sup log
 xeQ,r<diam(Q) SUP lul

 Bg(x,r)

 by N(Q) and call it the doubling index of Q. This definition is different from
 a doubling index for balls but more convenient in the following sense. If a
 cube q is contained in a cube Q, then N(q) < N(Q). Furthermore, if a cube q
 is covered by cubes Qi with diam(Qi) > diarnfV/), then N(Qi) > N(q) for
 some Qi.
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 The following result was proved in [9], where it was applied to upper
 estimates of the volume of nodal sets. However this result appears to be useful
 for lower bounds as well.

 THEOREM 5.1. There exist a constant c > 0 and an integer A > 1, de
 pending on the dimension n only, and positive numbers No = No(M,g,n,0),
 R = R(M, g,n,0) such that for any cube Q C B(0,R), the following holds:
 if we partition Q into An equal subcubes, then the number of subcubes with

 doubling index greater than max(N(Q)/(l + c), No) is less than ^An_1.

 Further, we will partition the cube Q into Ank subcubes (k will tend to
 infinity) and iterate the Theorem 5.1 for the subcubes.

 Notation. Let A > 1 be the integer from Theorem 5.1. Given an Euclidean
 n-dimensional cube Q , we partition Q into An equal subcubes with 1 jA smaller
 size than Q, we denote these cubes by Qj,, i\ — 1,2,..., An, then partition
 each Qi1 into An equal subcubes Q%, jl2, i2 = 1,2,..., A" and so on. We denote
 the collection of all subcubes of all sizes by A.

 By C\ we denote the binomial coefficients .
 Let ji, j2,j3,... be independent and identically distributed random vari

 ables such that

 We make a remark that we use the probabilistic notation because they
 are simpler than writing "the number of subcubes with."

 LEMMA 5.2. Let c,Nq be positive numbers. Let N be a function from the
 set of subcubes A to R+ with the following properties:

 (i) N is monotonic with respect to inclusion: if q\, q>i £ Q and q\ C q2, then

 F(jk = i) = l/An fori = 1,2,..., An.

 N(gi) < N(q2y,
 (ii) for any cube Q G A,

 and for any e > 0, there exist a > 0 and an integer A:q such that

 (17) P > max(

 for all positive integers k > kg.
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 Before we start the proof of Lemma 5.2 we give some informal explana
 tions.

 Heuristics. Let p = Suppose we have k independent and identically
 distributed variables yl and that each yt takes value 0 with probability p and
 value 1 with probability (1 —p). Then

 2=1 i=l

 for 0 < I < k.

 Suppose now that y\ are independent variables, each yi takes only two
 values 0 and 1, P(yj = 0) < p and P(yj = 1) > 1 — p. Now, yt are not assumed
 to be identically distributed. Then

 k k

 as)
 i=1 i=l

 The proof of (16) is parallel to (18) with the exception that we have to always
 add words "or smaller than AT0." Namely, starting with a cube and

 choosing randomly its subcube Qh,...,ik,jk+1 the doubling index of the latter is
 either (1 + c) times smaller than the doubling index of Qilt...,ik or smaller than
 7V() with probability at least 1 — p.

 Inequality (17) will be proved with the help of the following fact:

 CLAIM. Let p € (0,1) be a fixed number. Then for any e > 0, there are
 a > 0 and ko > 0 such that

 (19) </(1-£)
 i=0

 for any k > ko and I G [0, ak/ log k].

 Proof of the claim. Note that C'lk < kl for i < I. Hence

 i=0

 It sufficient to choose a > 0 so that

 lklpk~l < pk(-r~£)

 for large k, which is equivalent to

 lk\l/p)1 < (1 /p)£k.

 Since I < ak/ log k, we have

 I < elosk < (l/p)lfe, kl < eak < (l/p)tfc, (1/p)1 <{l/p)ak/]osk <(l/p)^k

 for k large enough and a < | log(l/p). Multiplying the three inequalities above
 we finish the proof of the claim. □
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 Proof of Lemma 5.2. We are going to prove inequality (16) by induction
 on k. For k = 1, it is true due to assumption (ii). Assume that (16) holds for
 {k — 1) in place of k. We want to show that (16) holds for k. For k > I > 0,
 define the disjoint events

 Ei,k := j.) € (max ((1^y+1, ^o) , max N°)

 E0,k ■= |jV(Qj:G (max ( (T+c) ' 7V°) .max(iV(Q)>-/V0)

 Ek,k ■= \ N{Qjij2l...jfc_ijfc) < max (

 If / < 0 or l > k. we will denote the empty event by E^k
 The doubling index of any cube is non-strictly greater than the doubling

 index of any its subcube. Hence C U^=0£,J;fc_i and Ej^- \ C uf
 where both unions are disjoint. Hence

 (N(Qn,h,..Jk^jk) < max NQJj = ^P(^,fc)
 We start to prove by induction on k that

 fe / 1 \ /c—2 / 1 \ i

 1=1 1=1

 Indeed,

 /c k i k k

 E p(j5i)fc) = E E n Ei,k) = E E n **,*)
 i=i i—l j=0 j=0 i=max(i,j)

 fc—1 k k

 > E ^ Eitk) + YMEi-i,k-! n Ei^k)
 j=l i=j i=l

 k—1 fc

 = E + Yj(Ei-i,k-i n Eitk) = i + ii.
 j=l i=l

 It follows from (ii) that

 ^(-E1/-l.Jfe—l H El-i,k) < ^P(-Ej-i,fc-i)

 Since Ef=z-i HEi-i,fc-i H Ei;fc) = P(£j_iifc_i), we obtain

 77 = P(£,/_ijfc-x) — P(£?j_iife_i fl Ei-i^k) > (l — P(£Ji_i>fe_i).
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 Hence

 k-1

 i+n>j2 nEj,k-1) + (i - -^)
 j=i

 fc \

 = ^T.r(E,,k-i) + (i-2j) E
 3=1 j=l~ 1

 By the induction hypothesis for /c — 1, we can estimate the latter amount
 from below by

 / 1 \ fc-i / i \i k—1 , -.k—l—i / i \ i+1

 eMm) O-nKE/Mfl) l1-^) 2=t — 1

 i=l

 Inequality (16) is proved, which implies

 N(Q) x <"x
 p N(Qjuh,-jk-i,jk) > raax(

 7 1=0 (1 + c)'

 It remains to prove (17). By (19) applied for p = ^ we have

 i=0

 for 0 < I < ak/\ogk, k > ko. □

 Now, we ready to formulate the corollary of Theorem 5.1 and Lemma 5.2,
 which will be used in the next section.

 Theorem 5.3. There exist constants CJ,C2,C > 0 and a positive in
 teger Bq, depending on the dimension n only, and positive numbers No =
 Nq(M, g,n,0), R = R(M, g,n,0) such that for any cube Q C B(0,R), the
 following holds: if we partition Q into Bn equal subcubes, where B > Bo, then
 the number of subcubes with doubling index greater than

 m&x{N(Q)2-Cl log B>loglogB, No)

 is less than CBn~l~~°2.

 Proof. Let us fix c, A, No, R from Theorem 5.1. Fix a cube Q C B(0, R)
 and partition it into An equal subcubes Q^, then partition each Q,, into An
 subcubes Qi1:i2 and so on. We denote by A the collection of all subcubes
 Qh,i2,-,ik a11 sizes

 First, we will consider the case B = Ak, where k is sufficiently large. In
 this case Theorem 5.3 follows from Lemma 5.2. Let us first check assumptions
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 (i) and (ii) of Lemma 5.2. The monotonicity property (i) for the doubling
 index of cubes is clear from the definition. The second assumption (ii) follows
 from Theorem 5.1. Now fix e > 0 so small that

 (ar-(  I \ 1+C2

 <a)
 for some c% > 0.

 The conclusion (17) of Lemma 5.2 for this e claims that the number of

 subcubes Qiui2,...,ik with N(Qiui2^ik) > max( (1+^]^losfc, N0) is smaller than
 / i \ fc(l—e)

 j^nk ^ J _ j^k(n—\—C2) _ j^n—X—C2

 Note that log B — k log A. We therefore can choose c\ > 0 so small that

 log(l + c) • ak/ log k > C] log 2 • log Bj log log B

 for all sufficiently large B = Ak. This is done to provide

 (1 -|- c^fc/logfc > 2';i log .B/log log fi

 We have proved Theorem 5.3 in the case B — Ak.
 Now, let B € [Ak,Ak+l] and define B = Ak. There are two partitions

 of Q into equal subcubes, say Q = UQi, i = 1 • • • Bn, and Q = UQi, i =
 1 • • • Bn. We know that the number of cubes Qi with doubling index greater

 than max(7V(Q)2~"Cl log^loglogiVo) is less than Bn^-C2. Each cube Qi is
 covered by a finite number, which depends on dimension n and on A = A(n)
 only, of cubes Qj, which have a smaller diameter. If N(Qt) is greater than

 max(7V(Q)2-Cl logIS/UlRk>K B^ Nq), then one of Qj that covers Qi also has N(Qj)

 greater than max(iV((3)2-Cl losB/lo§losB, jVo). Thus the number of cubes Qi

 with doubling index greater than max(A^(Q)2~Cl logS/loglog'B, iVo) is less than
 CBn~l~C2. We can decrease c\ and increase C to replace B by B in the
 previous sentence. □

 Remark 5.4. Here we collected several informal remarks to orient the

 reader. The goal of this paper is to estimate the Hausdorff measure of di
 mension n — 1 of zero sets of harmonic functions from below. If a harmonic

 function is zero at the center of a cube and the doubling index of this cube is
 bounded by a fixed constant, then it is not difficult and well known that there
 is a lower bound for the volume of the zero set in this cube. Unfortunately,
 the bound depends on the doubling index, and it is not clear why the lower
 estimate does not become worse as the doubling index becomes large.

 In the next section there will be an argument that works for the case
 of the large doubling index of the original cube. Speaking non-formally the
 argument will show that for a proper choice of B, the number of subcubes,
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 which contain zeroes, is larger than Bn~l , and the argument severely exploits
 that the number of bad subcubes with large doubling index is smaller than
 Bn~l. We do not specify here what the words "smaller" and "larger" mean.

 If we partition the cube with zero at the center into Bn equal subcubes,
 there can be some subcubes with small doubling index, which intersect the zero
 set, but there also can be bad subcubes with large doubling index, where we
 have no good a priori estimate. The estimate for the number of bad subcubes
 appears to be useful.

 In Theorem 5.1 the number of subcubes An is fixed, and it shows that
 all except at most \An~l of the subcubes have constant times smaller dou
 bling index than a big cube. For the estimates of the volume of the nodal
 set, it is crucial that the number of exceptions is smaller than An~l. In The
 orem 5.3 the number of subcubes Bn tends to infinity, but the bigger B the
 smaller the doubling index for the most of the subcubes becomes, and we
 still want the number of bad subcubes with big doubling index to be smaller
 than Bn . Theorem 5.3 is the iterated version of Theorem 5.1; the itera
 tion procedure is similar to the independent flips of the coin. The quantity
 k/\ogk ~ log B/ log log B in Theorem 5.3 comes from the simple estimate of
 the tails of the binomial distribution (19).

 We also note that for the purposes of this paper, a weaker estimate than
 the conclusion of Theorem 5.3 would be sufficient. Namely, it is sufficient to
 know that the number of subcubes with doubling index greater than

 is less than Bn 1 /(log B)K, where k > 0 is a sufficiently large constant depend
 ing only on the dimension.

 This section contains a geometrical construction that allows us to find
 many disjoint balls with sign changes of the harmonic function (Proposi
 tion 6.1). It appears to be useful for lower estimates for the nodal sets. The
 construction is using the estimates for the number of cubes with big doubling
 index and requires a look at several statements of the previous sections. The
 whole section consists of the proof of one proposition.

 Proposition 6.1. Fix a point O on the Riemannian manifold M equipped
 with Riemannian metric g. There is a sufficiently small radius Rq > 0 such
 that for any ball Bg(p,2r) C Bg(0,Ro) and for any harmonic function u on
 Bg(p,2r), the following holds: If /3(p,r) is sufficiently large, then there is a
 number N with

 max(iV(<3)/(log B)K, N0)

 6. A tunnel with controlled growth
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 and at least [VN]n 12C:i log log log N disjoint balls Bg(xi, C B(p,2r) such
 that u(xi) = 0.

 Proof. According to Section 4 we can find a spherical layer where the
 frequency does not grow too fast: there exist numbers s £ [r, |r] and N > 5
 such that

 N < (3(p, t) < 2eN

 for any t € (s( 1 - W0QlgiN), s( 1 + 10001^g2Ar))
 By the monotonicity property of the frequency, we have

 P(p, r) < (1 + e)/?(p, t) < 107V

 and

 N < fi{p, s) < (1 + e)p(p, ^r) < 2/3 (p, .
 Until the end of this section we will assume that N is sufficiently large.

 Fix a point x € dBg(p, s) such that sup |u| = |it(x)|. Put
 dBg(p,s)

 ^ ^ 108n2 log2 N
 Consider a point x G dBg(p,s( 1 — 5)) such that dg(x,x) = Ss. In other

 words, x is the nearest point to x on dBg(p, s(l — <5)). Note that

 (21) Ci(n)~^—r<d(x,x)<C2(n) \ log N log N

 Let us consider a box T (a hyperrectangle in the Euclidean space) such
 that x and x are the centers of the opposite faces of T, one side of T is equal to

 d(x, x) and n — 1 other sides are equal to r^g/yj4, where [•] denotes the integer
 part of a number.

 Let us divide T into equal boxes Tt, i = 1,2,..., [V7V]n—1, so that each
 T, has one side of length d(x, x) and (n — 1) sides of length We

 partition each J\ into equal cubes qtj, t = 1, 2,..., [V^V][log iV]4, with side
 d( x,x)

 , and the cubes qij are arranged in t so that d(qijt, x) > 1, x).
 [v/iV][logAf]4
 We will call the boxes Tj "tunnels."

 Note that

 dg(p,qi,i) < dg(p,x) +dg(x,qi,i) < s(l - 6) + Cj— atU < s(l - 5/2).
 5sy/n

 [log AT]

 Hence i C Bg(p, s(l — <5/4)). Recall that |«(x)| = K. Then by (9),

 (22) supM < K2 CliS^+Cl.
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 Applying (14) with 6, which is 100n2 times larger than <5 defined by (20),
 we obtain that for any point y £ T.

 (23) Af(y, lOnSs) < C5N + C < JV/100.

 The center of will be denoted by xltt.
 Now, let t = [%/iV] [log A/"]4. We can inscribe a geodesic ball Bij in \qt.L

 with center at x^t and radius 4r. Taking into account

 d'{x,/'x) £

 we deduce from (15), applied with x = xl^. that
 /~i N
 3 , 5 «r ^*3

 sup|«|>/C2
 B, i,t

 and therefore

 -C3T-^-C3 (24) sup |tt| > K2 iog5w
 2qi,[VN][\oSN\i

 Inequalities (22) and (24) imply the following estimate: there exist positive c,
 C such that

 (25) sup |m| > sup |u|2ciV/log2 N~G.
 In I „
 29i,[^JV][logJVJ4 2*".1

 The next step in the proof of Proposition 6.1 is the following claim:

 CLAIM 6.2. There exist c > 0, Nq > 0 such that at least half of tunnels
 Ti have the following property:

 (26) ^ max ( 2c log iV^Iog log N ' ^V°)
 for all t = 1,2,... [v^][logTV]4.

 Proof of the claim. We will assume that N is sufficiently big. Let us call
 a cube q^t bad if N(ql L) > N2~ Cl lofi N/log log N, where a constant c\ is from
 Theorem 5.3. It is sufficient to show that the number of bad cubes is less than

 the half of the number of tunnels Tj, i.e., \ [-v/iV]71-1.

 Let us partition T into equal Euclidean cubes Qt,t = 1,2,..., [log /V]4
 with side • For any point y €T, we have

 §

 dg{x,y) < 2d(x,y) < 4d(x,x) < 1q7 log2 N =: P
 By (14) we have

 sup |u|
 Bg(y'P) < 2CN/ log2 N+C
 sup |m| ~~

 Bg(y,p/2)
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 The last observation implies that

 N(Qt) < N

 for t = 1,2,..., [log N]4.
 It follows from Theorem 5.3 with B = [x/iV] that the number of bad cubes

 in Qt is less than C[\/iV]n_1~C2. Thus the number of all bad cubes is less than

 C[\/N)n~l-C2[\ogN}4 < ^[Vn]71'1. □
 We will call a tunnel Tt good if (26) holds.
 The next step in the proof of Proposition 6.1 is the following claim.

 Claim 6.3. There exists C2 > 0 such that if N is sufficiently large and Ti
 is a good tunnel, then there are at least 2C2 log N/log log N closed cubes qj~t that
 contain zero of u.

 Proof of the claim. By (26) we know that

 SUP M sup |u|
 (27) I0gi2±t^-<l06i5^< N

 sup | u | sup | u | 2Cl lo& N/ los lo& N
 In. In.
 2 Ql,t 2

 for any t — 1,2,, [x/iVjflogTV]4 — 1.
 Let us split the set {1,2,..., [v^V][log A"]4 — 1} into two subsets Si, S2.

 The set Si is the set of all t such that u does not change the sign in
 and 52 = {1,2,..., [v/7v][log TV]4 — l}\5i. By the Harnack inequality for t £ Si
 we have

 sup |u|

 (28) log hl't+\ <CU
 sup \u\
 1„,
 21z,t

 and for any t, €E S2 the inequality (27) holds. We therefore have

 sup |w| sup \u\ sup |u|
 , 29i,[\/iV][Iog AT]4 1 \ . \Qi,t+1
 i°g n— = lo§ rr + los cun cnn 1/ ' * sup \u\ sup \u\ ~ sup \u\
 1 1 1
 2^1,1 2^'* 2^'*

 N

 — |5i|Ci + I^ 12cx log tv/ log log tv '

 By (25),

 (29) cN/ log2 N-C< log

 sup

 2 Ar n ^ 1 2«Ji,[yjV][logN]4
 sup \u\
 2 9i,l
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 Hence

 cN/\og2N-C< |Si|Ci + |S2|
 2C1 log N/ log log N '

 Note that

 \Si |Ci < Ci [v^] log4 N <~N/ log2 N -C

 for N large enough. Thus

 oci log N/ log log N

 \S \ > £ > 2-2 logJV/loglogiV_ □ 1 2 log N

 We continue the proof of Proposition 6.1. At least half of the tunnels Tj
 are good by Claim 6.2. Hence the number of cubes qj~i where u changes a

 sign is at least ^ 12C'2 log N!log log N. For any such cube, let us fix a point
 Xi,t G Qij, such that u(xij) = 0. We had find many disjoint cubes with sign
 changes. To replace the cubes by balls is not difficult.

 The fact that the side of qi~t is comparable to ^^ 6 N shows that each ball

 Bg(xi0)to: Jjj) intersects not greater than C'yflog N](in other balls Bg(xhtl ;^=).
 We can choose the maximal set of disjoint balls Bg(xij, Since the num

 ber of Xij is at least |[v/iV]n~12C2logiV/loglogJV and the number of intersec
 tions for each ball is bounded by C3[log N]6n, the maximal set of disjoint balls

 Bg(xij, ^7=) will consist of at least glhffiL—-IJLJu/ balls. We can choose
 C4 G (0, C2) such that

 |V¥|„_1?;4logK/,oglogJ, [log N]fin ~ [ J
 for large enough N. □

 Remark 6.4. The following remark will not be used later but shows the
 flexibility of the construction. In the statement and in the proof of Proposi
 tion 6.1 one can replace VN by Na with any a G (0,1) and the statement will
 remain true.

 We fix a point O on the Riemannian manifold M equipped with Rie
 mannian metric g. There is a sufficiently small radius Ro > 0 such that for
 any ball Bg(p, 2r) C Bg(0, Ro) and for any harmonic function u on Bg(p, 2r),
 the following holds: If (3(p, r) is sufficiently large, then there is a number N
 with

 /3(p, r)/10 < N < 2(3 (p, ~rj

 and at least Na^-^2clo^N^°^N disjoint balls Bg(Xi,-fis) C B{p,2r) such
 that u{xi) — 0.
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 7. Estimate of the volume of the nodal set

 In this section we prove Theorem 1.2. We formulate it in the scaled form.
 Define the function

 V ' pn~l

 where the infimum is taken over all balls Bg(x, p) within Bg(0, Rq) and all
 harmonic functions u on M with respect to metric g such that u(x) = 0
 and N{Bg(O,R0)) < N. Here we denote by the N(Bg(0, Rq)) the supre
 mum of (3(x,r) over all Bg(x,r) C Bg(0,Ro). Recall that the radius Rq =
 Ro(M,g, n, O) is a sufficiently small positive number.

 THEOREM 7.1. There exists c > 0 such that F(N) > c for all positive N.

 Proof. Let u be a harmonic function that vanishes at x, Bg(x, p) C B(0, Rq)
 and 0u(x, p) < N for Bg(x, p) C B(0, Rq). By the almost monotonicity prop
 erty of the doubling index we know that

 N > \ lim/3(x, p) > 1/2. 2 p-> o

 Hence N is separated from zero. Furthermore, let us assume that F(N) is
 almost attained on u:

 m < 2F(N).

 We start with a naive and well-known estimate that gives some lower bound
 for F(N). There exists c\ > 0 such that

 ,31x Hn-l({u = 0}nffg(x, p)) > c! > c2 ^ ^ ~n—1 — (Q(™ ~ /oWn—1 — pn~l ~ {/3(x,p/2))"-1 _ AT"~i'
 This estimate follows from the fact that if a harmonic function u vanishes at

 x and has the frequency (or the doubling index) of Bg(x, p/2) smaller than N,
 then one can inscribe in Bg(x,p/2) a ball of radius ~ where u is positive
 and a ball of radius ~ ^ where u is negative. For instance, see [10] for the
 details.

 We can use the estimate (31) to bound F(N) from below for small (3(x,p/2).
 Now, we will assume that N is sufficiently big and will show that fi(x, p/2) is
 bounded.

 We argue by assuming the contrary. Let /3(x,p/2) be sufficiently big.
 Then we can apply Proposition 6.1 for the ball Bg(x,2r) = Bg(x, p) and find
 a number

 N>P(x,p/2)/10
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 and [Vftp 12^3 log iv/log log at disjoint halls Bg(xi, ^s) within B(x, 2r) such
 that u{xi) = 0. For each i, we know that

 r .. / r
 Hn~L({u = 0} n Bg(xit -=)) > F(N)

 n— 1

 //v Vv^/V,

 Since the number of such balls is at least [\Z/V]n-12C3logiV/loglogiV and these
 balls are disjoint and contained in Bg(x,p), we get

 Hn-\{u = 0}nBg(x,p)) >F(N) [y/ft ]" V3log^/loglog^^|^ .
 We can decrease C3 to a smaller positive constant C4 such that

 (32) Hn-\{u = 0} n Bg(x,p)) > 2c*l°z"/iozl°z»F(N)pn-1
 if N is sufficiently large. The last observation contradicts to (30).

 We have proved that N is bounded from above by some positive constant

 No, and we can use (31) with p — r to obtain the uniform bound F(N) > Jn'-i ■
 □

 Remark 7.2. Now, we know that F(N) is uniformly bounded from below.
 Since /3(x, p/2)/10 < N. the inequality (32) implies the following estimate of
 the volume of the nodal set:

 Hn-\{u = 0}nBg(x,p))
 pn-1

 > 2C6\ogP{x,p/2)/\og\ogP(x,p/2)

 for /3(x, p!2) > /3q.

 8. The lower bound in Yau's conjecture

 In this section we prove Theorem 1.1. Let B be a geodesic ball of fixed
 radius on a Riemannian manifold M. Consider a function u on B that satisfies

 Au + Xu = 0 in B and the harmonic extension of u

 h(x, t) = u(x) exp(v/At).

 The following lemma is well known, but for the convenience of the reader
 we give the proof below.

 LEMMA 8.1. There exists C\ > 0 and Ao > 0, depending on M and B
 only such that if A > Ao, then Zu is dense in B.

 Proof. Let y be a point in B x [—1,1]. Denote the geodesic ball with
 center at y and radius r on M x R by B^jx^(y,r). The Harnack inequality
 for harmonic functions says that there exist C\(M, B) > 1 and ro(M, B) > 0

This content downloaded from 205.175.106.141 on Wed, 10 Apr 2019 23:32:00 UTC
All use subject to https://about.jstor.org/terms



 NADIRASHVILI'S AND YAU'S CONJECTURES  261

 such that if 0 < r < ro and h is positive on BmxwXv, r), then for any y £
 BMxU(y,r/2), the following inequality holds:

 Kv) < Cih(y).

 Let us formulate the Harnack inequality in the following form: if \h(y)\ >
 Ci\h(y)\, then h changes sign in BMxu{.y,r).

 Let C2 = logCi. Consider a point y = (x, 0), x G B and the point
 y = (x,C2/V\). Since h(y) = C\ h(y), by the Harnack inequality we know
 that if A is sufficiently big and 5mxm(2/, 3C2/VX) C B x [—1,1], then there is

 a point y G B x [—1,1] such that h(y) = 0 and dg(y,y) < SC2/VX- In other
 words, Zh is dense in B x [—1,1]. Since Z)t = Zu x R, the zero set Zu is
 also dense in B. □

 Now, it is a straightforward matter to prove Theorem 1.1.

 Proof. By Lemma 8.1, if A > Ao, then Zu is dense in B and we can

 find c(VA)n disjoint balls Bu^itC/\JA) such that u(xi) = 0. It is sufficient
 to show that

 (33) Hn~\Zu n BM(xi,C/VA)) > qA-V
 for some c\ = c\(M,B) > 0. Indeed, since the balls are disjoint, it would
 immediately give Hn~1(Zu n B) > Oj^/X.

 We can apply Theorem 7.1 for the function h to see that

 Hn(Zh n BMXR((®i,0), ^)) > c3A-n'\
 In view of Zh = Zu x R, that gives (33). □
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