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ABSTRACT

We prove the following convexity property for supremum norms of harmonic functions. Let Q be a
domain in R", Cl0 and E a subdomain and a compact subset of Q, respectively. Then there exists a constant
a = <x(E, £l0, Cl) e (0,1] such that for all harmonic functions u on Cl, the inequality

is valid. The case of concentric balls Cl0 a E cz Q. plays a key role in the proof. For positive harmonic
functions on such balls, we determine the sharp constant a in the inequality.

1. Introduction and results

If an analytic function / on a domain O in C is bounded by 1 on Q, while it is
'exponentially small' on a subdomain O0 or its boundary,

| / | ^ e~K on 8Q0,

for some positive number K, then/is 'exponentially small' everywhere in Q. More
precisely, for zeD\n^, there is a positive constant a = a(z) independent of/and K
such that

LA»I <*-"*• (i-i)

It may seem surprising that there is similar 'propagation of smallness' for
arbitrary harmonic functions in Rn (n ^ 2).

THEOREM 1.1. Let Q be a domain in Rn, fiocQa {nonempty) subdomain and
E c f l a (nonempty) compact subset. Then there is a constant a = (x(E, Qo, Q) e (0,1]
such that for all complex-valued harmonic functions u on Q,

where \\u\\A = supxeA\u(x)\.

For analytic functions/in C, (1.1) follows immediately from Nevanlinna's two-
constants theorem. In this case, log | / | is subharmonic and one may take a(z) equal
to the harmonic measure co(z) of the boundary of Qo relative to Q\Q0 [8]. Observe
that the proof requires analyticity of / only on Q\H^. Hadamard's three-circles
theorem may be considered as an important special case.

For analytic functions / i n Cn one may also work with log|/|. However, in the
general harmonic case no special property of log|w| is known to yield (1.2). In fact,
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for real harmonic u, straightforward use of harmonic measure gives only an
arithmetic inequality which is much weaker than (1.2) when |w| is very small on Qo;
compare Lemma 2.2.

For our proof of Theorem 1.1, we start with the special case of concentric balls
(Section 3). Subsequently, the general case is dealt with by a covering argument of
known type (Section 4).

THEOREM 1.2 (Three-balls theorem). Suppose 0 < p < r < R and n^2. Then
there exists a constant ae(0,1), depending only on p/R, r/R and n, such that for all
complex-valued harmonic functions u on the ball B(0, R) in R",

Nlr^lKWIlr, (13)
where \\u\\t = s\ip\u(x)\ on the ball B(0, t).

For the special case of positive harmonic functions on balls, Section 5 contains an
explicit description of the optimal constant a. That work has benefited greatly from
a visit to Amsterdam of Yu. I. Lyubarskii (Kharkov).

For arbitrary harmonic functions we have obtained a partial solution of the
relevant extremal problem (Section 5).

We finally mention some earlier work on 'transfer of smallness'. Naturally, an
inequality (1.3) (with sup norms over spheres) cannot hold for all harmonic functions
u on the spherical shell bounded by the spheres S(0,p) and S(0,R), since such
functions may vanish on the inner sphere without vanishing identically. However,
there is a (fairly complicated) three-spheres theorem for harmonic functions by
Solomentsev [10]. In this context one may also mention work by Janson and Peetre
[5] and very recent work by Peetre and Sjolin [9]. A certain transfer of smallness for
solutions of elliptic partial differential equations has been observed by Armitage,
Bagby and Gauthier [1]. It is plausible that our Theorem 1.1 can be extended to
solutions of a large class of partial differential equations. (In fact, stimulated by our
work, R. G. M. Brummelhuis has just obtained a crucial L2 analogue of Theorem 1.2
for such equations.) A preliminary form of the present results has appeared in the
second author's PhD thesis [6].

2. Auxiliary formulas

It is useful to recall some basic properties of bounded harmonic functions u on
the ball B(0, R) in R"; compare [4]. Assuming that u is continuous on the closed ball
B(0, R), one can represent u(x) by the Poisson integral of its boundary values on the
sphere S(0, R):

[ ^ K y ) , *eB(0,R). (2.1)

Here on = 2nn/2/r(\n) is the surface area of the unit sphere S = 5(0,1) in Rn. Formula
(2.1) holds for all bounded harmonic functions on the ball if one substitutes for u{y)
the (almost everywhere existing) nontangential boundary values of u. Indeed, for
fixed x one can start with a smaller ball and then take a limit.

Setting x = rt, where £, e S, u may also be represented by its Laplace series
00

O^r^R. (2.2)
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Here the spherical harmonics Yk are pairwise orthogonal in L\S), and for fixed r, the
series is convergent to u(r£) in L2(S). By this representation one has the following
identity for L2-norms on spheres:

t II Yt || I r». (2.3)
fc-0

Hence, by Hadamard's three-circles theorem applied to ][] || iy222fc or by direct
computation, log ||M||r>2 is a convex function of log r.

LEMMA 2.1. For 0 < p < t < R,

iK.^lK.NiX
where fi is Hadamard's exponent:

H HH\R'R) \ogp/R'

The maximum principle for harmonic functions on a spherical shell B(0,R) —
B(0,p) gives a corresponding arithmetic inequality for supremum norms on spheres
which in our case agree with the supremum norms ||w||r over balls.

LEMMA 2.2. For 0 < p < t < R,

For n = 2, the right-hand side has to be replaced by its limit as n —• 2.

For bounded harmonic functions on the unit ball with axial symmetry about the
jc1-axis, the values on this axis are given by a simple integral. It is obtained from the
Poisson integral (2.1) by setting R = 1, x = selt y = {yx,y') = (cos 9, sin 9n'), where
9 runs over [0, n] and n' runs over the unit sphere S' in (JC2, ..., xn)-space. In this case
da{y) = (sin 9)n~2d0da(n'). Integration over S' gives the following.

LEMMA 2.3. Let u(x) = M(JC15 X') be harmonic and bounded on the unit ball B(0,1),
and let u(x) depend only on xx and the length of x' = (x2,...,xn). Then the values
u(sej) — u(s, 0') are given by the integral

«(*?i) = Q(s, 0) "(cos 9, sin9e2)d9, -1 < s < 1, (2.4)
Jo

where

We also need a related special integral.
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LEMMA 2.4. For n^-2 and a> b^O,

sinn~20 .„ a

an J 0 (a-b cos 0)n {a2-bjn+1)l2'

For the proof, one may start with the integral of {a — bcosOy1 and carry out
differentiations with respect to a and b. The case where the integrand has denominator
(a —6 cos 0)""1 occurs in the table in [3, p. 384].

3. Proof of the three-balls theorem

In the present section we do not aim for the best constant a in inequality (1.3).
Changing scale in Theorem 1.2, one may take R = 1. It may also be assumed that

our harmonic function u on B(0,1) is bounded and that ||t/j|x = 1. (If ||w||p = 0 or,
equivalently, u = 0, there is nothing to prove.) We may, finally, impose the following
conditions, using operations which do not increase the norms ||«||g and which leave
||u||r unchanged.

(i) For the given r, the norm ||«||r is equal to the value of u at the point rel. (One
may rotate about the origin and multiply by a constant of absolute value 1.)

(ii) u is real-valued. (With (i) satisfied, u may be replaced by Rew.)
(iii) u has axial symmetry about the jq-axis. (With (i) satisfied, symmetrization of

u with respect to the xraxis—which replaces u by an average of rotations of u—leads
to a function w with ||u||r = u(rex) = u(re^).)

DEFINITION 3.1. For fixed 0 < p < r < \, n^2 and 0 < e ^ 1, He = H(e,p,r,n)
will denote the class of those harmonic functions u on the unit ball in Rn that satisfy
(i)—(iii) and for which ||w||j = 1 and \\u\\p < e. We then set

ra(fi) = m(s,p,r,n) = sup ||w||r = sup u{re^). (3.1)

Theorem 1.2 will be proved if we show that there is a constant a e (0,1) (depending
on p, r and n) such that

Lemma 2.2 gives a useful first majorant for m(e).

P R O P O S I T I O N 3.2. For 0 < e ^ \ ,

l - l _ p2~n-r2-n

def P

m(e)

log/?

The precise form of m(e) for 'large' e will be determined in Section 5. However,
for the proof of Theorem 1.2, we need a better majorant for small e, one that tends
to zero sufficiently rapidly as e J, 0.

PROPOSITION 3.3. For 0 < £ ^ 1,

log/-
log/7'm(e) ^ m2(e) = V2(l -rp*-™J»i\ pH = /?„(/>, r) =
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Proof. Let u be in H(e,p,r,n). In order to estimate u(rex), we use the Poisson
integral (2.1) with R = te(r, 1]. Setting x = rex and y = trj with tjeS, rj = (cos#,
sin 0-77'), where rf runs over the unit sphere S' in R""1, the Cauchy-Schwarz
inequality shows that

1/2

The final integral may be evaluated with the aid of Lemma 2.4; taking a = t2 + r2

and b = 2/r, one has a2 — b2 = (t2 — r2)2. The L2-norm of u on S(0, t) may be estimated
by Lemma 2.1, where we now take R = 1. Observe that ||M||8I2 is majorized by the
supremum norm ||u||s, so that \\u\\p2 ^ £ a n d IMIi,2 ^ 1> hence ||«||t 2 ̂  ê  with ft =
PH(p, t). Thus (3.3) leads to the inequality

/2

<n-l>/2 1 {

J 1^ (3.4)

The choice t = V proves the proposition.

REMARK. More precise analysis of (3.4) would lead to inequalities such as

Proof of Theorem 1.2. Fix 0 < p < r < 1 and n ̂  2. As observed above, it is
enough to prove inequality (3.2) for some constant oce(0,1). To that end, let M(e)
denote the infimum of the majorants for m(e) obtained in Propositions 3.2 and 3.3:

= c2 fa12 for 0

Here c2 > 1 and 0 < cx < 1, while e0 is such that m^e,,) = m2(e0). One may now
determine ae(0,|/?H) such that ej = M(e0). It is easy to verify that the resulting
function ea is a majorant for M(e) on [0,1].

4. Proof of Theorem 1.1

Let Q, fi0 and E be subsets of Rn as in Theorem 1.1, and let u be harmonic on
Q. Aiming for a constant ae(0,1), we may assume that u is bounded and that
||«||n ^ 1. One may next assume that Q is not all of Rn (otherwise u will be constant
and there is nothing to prove).

We now enclose the compact set E in a finite union Qp = Qo U Bx U ... U Bp, where
5 , c c Q (that is, Bx c Q) is a ball with centre in Qo, and, in general, Bk c c Q is a
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ball with centre in Qk:_l = Qo U Bl U ... U Bk_v To explain the idea of the proof, we
focus on the case of B1 and Q1 = Qo U Bv Let Vx and Wx be balls concentric with Bl

such that Vx is maximal in Qo and W1 is maximal in Q. Then by Theorem 1.2 there is
a constant 0^6(0,1), depending only on the radii of Bx, Vx, Wx and on n, such that

I I M I I B ^ N I I J J I M I I I K T ' ^ I I " ^ -
Since \\u\\no ^ 1, also

II" II n0 < II«II5,. h e n c e ||«II n, ^ II" II So-
In the next step, one similarly proves

Thus, finally, with constants ate(0,1) depending only on the geometry,

REMARKS. Coverings by balls are a standard device in the proof of inequalities
as in Theorem 1.1. For the case of analytic functions on domains Cl in C", such a
proof may be found in [7, Chapter 8]. Similarly, for positive harmonic functions on
Q c R", the Harnack inequality for balls leads to the result

where C depends only on E, Qo and Q; compare [2].
Of course, the present method does not give much insight into the nature of the

best (largest) constant a in Theorem 1.1.

5. Extremal functions for the case of concentric balls

It would be interesting to determine the largest possible constant a in Theorem
1.2. To that end, one would like to have a precise description of the function m(e)
introduced in Section 3. A partial solution is given in Theorem 5.4. The corresponding
extremal problem for the case of positive harmonic functions has been solved
completely; see Theorem 5.1.

Let H+ = H+(e,p,r,n) be the subclass consisting of the nonnegative harmonic
functions u in H£. In particular, again ||w||p < e and Wu^ = 1. We define

m+(e) = m+(e,p,r,n) = sup ||w||r = sup w ^ ) , (5.1)

<*M = <(/>, r, n) = max {a: m+(e) < ea, 0 < £ ̂  1}. (5.2)

The following theorem contains precise formulas for m+(s) and ctM. For the
formulation of the results, we introduce the spherical caps

^ = {^eS<=R n :^>cos0}. (5.3)

THEOREM 5.1. There is a unique extremal function in the class H\. It is given by
the harmonic measure coe(x) = co(x, e,p, n) (relative to the unit ball) of that spherical cap
Sp (j) = (j)e, for which cojipej - e. Thus u{rex) ̂  oos{rex) for all functions u in H+

e. In
terms of the function Q given by formula (2.5),

m+(e) = coE(rex) = f' Q(r, 6) d0, P' Q(p, 0) dd = e. (5.4)
Jo Jo
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Furthermore,
def

OL+
M is equal to y — inf R((f>), (5.5)

where
\og\jQ(r,0)de

Proof. In order to verify that the harmonic measure coE belongs to the class HE,
we shall show that on every closed ball B(0, t) with 0 < t < 1, coE assumes its maximum
at the point tel and its minimum at the point — tev Indeed, at the points x of the
sphere S(0, t), the value coE(x) is proportional to the average of l/\x—y\n as y runs over
the cap S^, 0 = 0e. This average depends only on the angle 0 between the (positive)
symmetry axis of S^ and the vector x; ooe(x) will decrease monotonically as 0 runs
from 0 to n. This may be seen geometrically by keeping x fixed at the point tex, while
turning the symmetry axis of the spherical cap in the (xl5 x2)-plane from angle 0 with
the positive xraxis to angle 0+d0 (0 ^ 0 < 0 + d0 < n). Neighbouring caps 1(0) and
E(0 + d0) will have a large overlap; the points y in this overlap contribute the same
amount to the two harmonic measures at x = tev For the remaining parts of the caps,
the points y of 1,(0+d0) —1,(0) will be further from x = te1 than are the corresponding
points y of 1(0) —1(0 + d0), hence the former make a smaller contribution to the
harmonic measure at te1 than do the latter.

We shall finally prove the basic inequality

u(rej ^ cojirej, p < r < \ , for all u e H+
E. (5.7)

To this end we introduce the difference w = u—coe. Since ueHE has (nontangential)
boundary values in [0,1] a.e. on S, while coE has boundary values 1 on S^ and 0 on
the complementary (open) cap,

0 a.e. for 0 ^ 0 < <f>e,

We also know that w(pe^) = u(pe^)—e ^ 0.
For r > p , we now use Lemma 2.3 to write

^ ^ (5.9)

Observe that
def Q(r,0) _ 1 -

is positive and monotone decreasing for 0 ^ 0 ^ n. Hence in view of (5.8),

<re,) = I"(g(0)-g(<j>e))Q(p,0)w(0)d0+g(<j>E)w(pe1) ^ 0. (5.11)

This formula implies the basic inequality (5.7), which proves that coe is an extremal
function for the class HE. The extremal function is unique: if usHE is extremal and
w = u—coE so that w(rer) = 0, then the integral in (5.11) must be equal to 0, hence
u>(0) = 0 a.e. on [O,TC], w(y) = 0 a.e. on S and thus w(x) = 0 throughout 5(0,1).



360 J. KOREVAAR AND J. L. H. MEYERS

At this point formula (5.4) follows immediately from the definitions of m+(e) and
coE(x), combined with Lemma 2.3.

For the proof of (5.5), we observe first that by (2.5) and the preceding,

0 < I Q(s,9)d9< 1, O < 0 < T T ,

1 - 5 2

Q(s, 9) = QQ(s, 9) sin"-2 9 with Q0(s, 9) = -^±—

It follows that R((f) is a positive continuous function for 0 < 0 < n, with the
following behaviour at the end points:

( 5

Thus y = info<^<7t/?(0)e(0,1). Finally, (5.4) and (5.6) show that

logm+(e)
loge or

In the final inequality, no exponent a larger than the minimum y of R{(j>) on [0, n]
can work for all values of e, since 0E runs from 0 to n as £ runs from 0 to 1. Hence

COROLLARY 5.2. One has

<x+
M(p,r,n)>/rH,

In particular, a^ -* 1 as r J, p > 0. Also, by (5.12), a^ -* 0 as r f 1.

Indeed, if minR is assumed inside [0,7c], then in obvious notation, using (5.6),
calculus and (5.10),

. n . \0gF . F' . G
mmR = mm—^— ^ mm—-mm —

log G G F

. . F . G' . . /(i_r)(i+ / ,) \« /logr\n

^ —mm—= ming/maxg= r[\ > —5_I
G F \(\+r)(\-p)J \jogp)

By (5.12), the same lower bound for R holds at the end points.
Theorem 5.1 immediately gives an inequality for m(e).

COROLLARY 5.3. ForO<s^\,

m(e) = m(e, p , r, n) ^ 2w+(|( 1 + e), p , r, n) - 1. (5.13)

Indeed, for u e H(e, p , r, n), the function M = |(« + 1) belongs to the class //+(£( 1 + e),
p,r,n), hence

, u{rex) ̂  2m+(|
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The following theorem shows that the equals sign holds in (5.13) when e1 ^ e ^ 1,
where

(CD i£^ H (5i4)

THEOREM 5.4. For ex ^ e ^ I, the extremal function for the class He = H(e,p, r, n)
is the bounded harmonic function ve on the unit ball, with boundary values 1 on the
spherical cap S^, y/ = y/e, and boundary values — 1 on the complementary (open) cap,
where y/e is determined by the condition ve(pe^) = e. In terms of the function Q of (2.5),

m(e) = vlre,) = Q(r, 9) sgn (¥e - 6) d6,
Jo

9)sgn(y,e-6)d0 = e. (5.15)r<2(/v
Jo

Proof The proof is similar to the proof of Theorem 5.1, hence we mention only
the differences. Let £x be defined by (5.14). By (2.4), (2.5), Q ^ 0, HQ(p,d)dd = 1,
Q(p,0) > Q(p,n — 0) for 0 < 0 < \n, hence in particular 0 < e1 < 1. Also,

will be an increasing function of yi. Taking ex ^ e ^ 1, we may uniquely determine

Now let vB be the harmonic function described in the proposition, so that \(ve+1)
is the harmonic measure of the spherical cap S^. Comparing values at pex, we
conclude that

vE(x) = 2co(x, 1(\+E)) — \.

It follows that on the closed ball B(0, t), ve assumes its maximum at the point tex and
its minimum at the point — tev Since y/e ̂  \n, \ve( — te-^)\ < \ve(tej>\, hence \\ve\\l =
ve(tex). In particular, \\vE\\p = e and | | u j r = vE(rex), so that ve belongs to the class He.
The basic inequality

u(rex) ^ ||y£||r, p < r < 1, for all ueHe

now follows from (5.13).

COROLLARY 5.5. As e runs from EX to 1, m(s) is strictly increasing and concave:
m'(s) = g(y/e) decreases from m'(ei) = g(\7i) to

m'(l) = g(n) = ^

The last number will be an upper bound for

<xM = max{a:m(e) ^ ea, 0 < e ^ 1}.

In particular, a M -• 0 as r } 1. Also, <xM -> 1 as r [ p > 0.
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The formula for m'(e) follows from (5.15):

dm dm I de Q(r,y/e)
77 = gWe),de dif/J dy/E

compare (5.10). Finally, the formulas m{\) = 1 and m(e) ^ ea for e near 1 imply
a ^ m'{\). A lower bound for aM may be obtained from the majorant M(e) of m(e) in
(3.6), or from an improved majorant from (3.5) and (5.13). These inequalities show
that aM -• 1 as r j, p > 0.

However, we have no lower bound for <xM similar to the lower bound for OL+
M in

Corollary 5.2.

NOTE ADDED IN PROOF. The authors have learned recently that there is an older three-balls theorem
which has an additional constant C on the right-hand side of (1.3). See E. M. Landis, 'A three-spheres
theorem' (Russian), Dokl. Akad. Nauk SSSR 148 (1963) 277-279; English translation in Soviet Math.
Dokt. 4 (1963) 76-78.
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