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NODAL SETS FOR SOLUTIONS
OF ELLIPTIC EQUATIONS

ROBERT HARDT & LEON SIMON

Here we study, on a connected domain ΩcR", the zero set u~ι{0} of
a solution u of an elliptic equation

aijDjDjU + bjDjU + cu = 0,

where aij,bj,c are bounded and #/7 is continuous.
Our principal result (precisely stated in Theorem (1.7) below) is that

the (n - l)-dimensional Hausdorff measure of u~ι{0} is finite in a neigh-
borhood of any point xo € Ω at which u has finite order of vanishing. (For
Lipschitz ay this holds at each point XQ G Ω by the unique continuation
theory for elliptic equations.) We actually obtain an explicit bound on the
Hausdorff measure of u~ι {0} in terms of the order of vanishing of w, the
modulus of continuity of α, 7 , and the bounds on α, j?, bj9 c.

Notice that in the case the coefficients ciij,bj,c are analytic, u is then
real analytic [8], and the finiteness of the (n - l)-dimensional Hausdorff
measure of κ~ !{0} is automatic [3, 3.4.8]. The explicit bound on the
(n - 1 )-dimensional Hausdorff measure is nevertheless of interest in this
case, but a more precise estimate for the real analytic case was already
established in [2].

We also show here (in Theorem (1.10)) that if the coefficients are suffi-
ciently smooth then u~ι{0} decomposes into a disjoint union of the em-
bedded C1 submanifold u~ι{0} Π {\Du\ > 0} together with the closed
set u~ι{0} Π |Dw|~*{()}, which we show is countably (n - 2)-rectifiable.
L. Caffarelli and A. Friedman showed already in [1] that dimw^O} n
IDwl"1^} < n - 2 in the case of equations of the special form Δw +
/(x, u) = 0. We thank F. H. Lin for pointing out this reference.

In §5 of the present paper we apply the main estimates of §1 and an
estimate of Donnelly and Fefferman [2] for the order of vanishing of eigen-
functions to give an asymptotic bound of the (n - 1 )-dimensional measure
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of u~x{0}> where Uj is an eigenfunction corresponding to the 7th eigen-
value of the Laplacian on a compact Riemannian manifold. In the real
analytic case, a more precise estimate was obtained in [2], but the results
of the present paper seem to be the first estimates for the smooth case.

1. Statement of main results

We consider the second order linear equation

( 1 . 1 ) dijDiDjU + bjDjU + cu = 0

on a domain Ω c Rn, and we assume the following:

(1.2) a

where Xo denotes a given point of Ω (note that this assumption really
involves no loss of generality because we can always achieve it with a
suitable linear transformation, provided the original equation is at least
elliptic at xo),

(1.3) \au{x) - au(xo)\ < σ(\x - xo\), xeΩ,

where σ is an increasing continuous function on [0,oo) with σ(0) = 0 (σ
is a modulus of continuity for α ί ; at xo),

(1.4) sup \bj\ < μu sup|c| < μ2,

where μi,μ2 are constants.
Concerning the solution u of (1.1) we assume u e Cι(Ω) Π H^£(Ω)

(hence u e Cι>a(Bp(x0)) n H2>P{BP{X0)) Vα e (0,1), p > 2, by the elliptic
regularity theorem, provided p < dist(;co,dΩ) and σ(p) < c~x for suitable
c = c(n)), and we consider a point Xo e u~{{0} at which u has finite order
of vanishing. Thus we assume that there exists an integer d > 0 such that

where, here and subsequently, \\u\\2

p = P~n fBp{Xo)u
2- (Recall [6], [4] that

such a d exists automatically if the 0,7 are Lipschitz.) Then there exist

arbitrarily small numbers R such that

(1.5) \\u\\R<2d+x\\u\\m,

because otherwise \\u\\p > 2d+ι\\u\\p/2 for all sufficiently small p, and it-
eration of this implies that limsup^o/?-^"1!!*/!^ < 00, contrary to the
hypothesis (*).
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We subsequently use the notation

(1.6) δ(p) = σ(p) + μιp + μ2p
2.

Our first result asserts that the <%*n~ι measure of u~ι{0} is bounded in a
neighborhood of x0 in terms of n, μ, d, and a certain constant p0 e (0, R).
Specifically we have the following.

(1.7) Theorem. There exist constants c = c(n) > 0 and εo = εo(n) e
(0,1/2] such that ifxo e u~ι{0}, if po > 0 is small enough to ensure that
δ(R) < ε3d and BR(x0) c Ω, with R = ε~{p0 and ε = εo/d2n+\ and if
(IΛ)-(L5) all hold, then

(i)
X™-l(Bp(xo)nu-l{0})<cdpn-1 (<oo) \fp<po,

(ϋ)
dim{BPo(xo) Π u-ι{0) Π \Du\-l{0}} <n-2.

Thus Bp(x0)Γ\u~ι {0} decomposes into a union of the (n-1 )-dimensional
C1 submanifold^ixoinw^OjnilDwl > 0} with finite («-l)-dimensional
measure, and a closed set /^(xo) n u~ιW Π {IDMI'^O} of dimension

(1.8) Remarks. (1) An inequality like (ii) was established for equa-
tions of the form Δw + f(x, u) = 0, in case Δw is the standard Euclidean
Laplacian, in [1]. (See the discussion in (1.9) below.)

(2) It is perhaps worth mentioning explicitly that in the course of the
proof of Theorem (1.7) (see Remark (4.6) below) we show that for any
given θ > 0 we can bound the order of vanishing of u at any y e Bp(x0) by
d + θ, for suitable p > 0. Of course, if u e Cd(Ω), the order of vanishing
of u is trivially < d in some ball Bp(x0).

(3) The results of the above theorem remain true (and the proofs need
very little modification) in case equation (1.1) is replaced by the divergence-
form equation

(1.1') Di(aijDjU) + Diφiύ) + 5Z D(u + cu = 0,

if

(1.20 \aij\<7, aijζiζjZVϊW

(1.30 N + |£/| + k|<//

hold, and α/ 7,6, are Holder continuous with exponent a for some a e
(0,1). Actually it would suffice in (1.3') that bhc e Lp for suitable p.

(4) Of course the results of Theorem (1.7) apply to fully nonlinear sec-
ond order elliptic equations of the form

aij(x, u, Du, D2u)DiDjU + bj(x, u, Du, D2u)Dju + c(x, u, Du, D2ύ)u = 0,
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provided u e C2, α/; is continuous, and bj,c are bounded, because such
an equation has the form (1.1)—(1.4) with suitable σ,μ.

Next we want to give a more precise discussion of the set u~ι{0} Π
\Du\~l{0} near JC0. For this we need aiJ9bJ9c € Cd(Ω), so that u e
Cd+x>a(Ω) Vα e (0,1) by the elliptic regularity theory. Then we have:

(1.9) Lemma. If (\Λ) holds with u ψ const, aiJ9bJ9c e Cd(Ω), au

is positive definite on Ω, and (*) holds at each point x0 e u~ι{0}, then
u~ι{0} Π IZίwl"1 {0} decomposes into the countable union of subsets of a
pairwise disjoint collection of smooth (n - 2)-dimensional submanifolds.
{Thus u~{{0} Π \Du\~l{0} is a countably (n - 2)-rectifiable subset in the
terminology of [3].)

Proof. The argument is essentially that used by Caffarelli and Friedman
[1]. For each q = 1,2,3, , we let

(1) Sq = {x: Dau(x) = 0 V|α| < q and Dq+{u(x) φ 0}.

Evidently, in view of Remark (1.8)(3) we have, for any x0 with u(xo) = 0,
Du(xo) = 0 and for suitable p > 0, that

(2) Bp(xo) Π {x: u(x) = 0,Du{x) = 0} = (ud

q=ιSq) ΠBp(x0),

and of course

(3) SpΠSq = 0 for pφq.

Now consider x eSq and choose a multi-index β with \β\ = q -I and
Hess(Dβu){x) Φ 0. By applying Dβ to each side of (1.1) and using the fact
that Dau = 0 Vα with |α| < q, we get

so that, since (aij(x)) is positive definite and Hess(Dβu)(x) Φ 0, we must
have rankHess(Z)^w(jc)) > 2.

Thus we can choose j'1,/2 G {1,•••,«} such that grad(D/
grad(D/2D^w) are linearly independent at x, hence for some p > 0

*,(*) n (DhD
βu)-ι{0} n (

is an embedded (n - 2)-dimensional submanifold MβiXiQ which contains
all of Bp(x)r\Sq.

We have thus shown that for each x e u~l{0}n \Du\~l{0} we can
find p > 0 and smooth embedded (n - 2)-dimensional submanifolds
MβXtXtqx, , MfirtXtqr such that

Bp(x) Π11-^0} Π \Du\-l{0} c \Jr

j=xMβj^qr

This completes the proof of Lemma (1.9).
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Notice that by combining Theorem (1.7), Lemma (1.9) and the unique
continuation theory for elliptic equations we arrive at:

(1.10) Theorem. Suppose that (1.1) holds with u φ const and that in
addition aih bj, c e C°°(Ω) and a^ is positive definite on Ω. Then u~x{0}
decomposes into the disjoint union (u~ι{0} Π {\Du\ > 0}) U {u~x{0} Π
IDwI'^O}) of smooth (n - \)-dimensional manifold having finite (n - 1)-
dimensional measure in each compact subset ofΩ and a closed countably
(n - lyrectifiable subset.

2. An estimate for the zero set of a polynomial

(2.1) Theorem. Let q: Rn —• R be a polynomial of degree < d and
suppose that dimq~x{0} < k. Then

^k{q-ι{0}ΠBι)<cdn-k,

where c depends only on n.
Proof In case k = 0, ^ { O } is a finite set, and the inequality follows

from [7, Theorem 2], which bounds the sum of Betti numbers, hence the
number of components of #~*{()}, by d(2d - I ) " " 1 < cdn.

In case k > 0, we use the coordinate projections

defined for λ G A(n,k) = {(ι'i, ,/*) € Zk: q < i{ < •• < ik < n}.
Assuming d im^ '^O} < k, we infer from the inequality [3, 2.10.28] that
q~ι{0}Γ\pϊι{y} is finite for each λ e A(n,k) and almost all y e Rk. For
such λ,y9

cardq-ι{0}npϊ{{y} < d(2d - I)""*"1 < cdn~k

as in the previous case because q~x {0} Π/?Jx {y} is defined by the vanishing
of a polynomial of degree < d on a Euclidean space of dimension n-k.
Using this estimate and [3, 3.2.27] we conclude

λe\{n,k) Pλ(Bι)

3. Estimates for the zero sets of harmonic polynomials

Let φ be a harmonic polynomial of degree d in R" and φ φ const. We
note that (2.1) (with k = n - 1) gives

(3.1) βrn-χ{φχ
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Also, dimlZλ^-^O} < n - 2, because otherwise we would have
dim\Dφ\~ι{0} = n - 1 and by stratification of algebraic varieties (see
[11]) we could find a smooth connected (n - l)-dimensional submanifold
M of Rn with \Dφ\ = 0 on M. Since φ = const on M we would then have
φ - const satisfying zero Cauchy data on M, thus contradicting unique
continuation for harmonic functions. In particular, we can now deduce
from Theorem (2.1) (with k = n-2) that

(3.2) ^n-2(\Dφ\-ι{0}nB{) <cd2.

Our main estimate for harmonic polynomials is given in the following
theorem.

(3.3) Theorem. There are constants θ = θ(n) e (0,1/2) and c =
c(n) > 0 such that if φ is a harmonic polynomial of degree d in Rn,
sup5 l \φ - 0(O)| = 1, and \Dφ(0)\ < (θε)d~ι, then

&n(B{n{x: dist(jr,{|Zty| < (θε)d-{}) < ε}) < cd2n+2ε2logε~ι

for each ε e (0,1/2].
Remark. It seems likely that the lemma may be true without the factor

logε"1 on the right, but such an inequality would not significantly improve
the main results of the present paper.

Proof of Theorem (3.3). The proof is a fairly straightforward application
of Theorem (2.1) together with standard estimates for harmonic functions
and the coarea formula.

First notice that we must automatically have that d is > 2 and that for
each z e Bx(0) and each ε e (0,1/2]

(1) sup \D2φ\ > θ{2θε)d~2

Bε(z)

for suitable θ = θ(n) € (0,1/2). Indeed the given facts about φ tell us that

(2) supl^l^c" 1, c = c(n),
5,(0)

so d > 2. Also if (1) were false for a given z e B\(0), then stan-
dard estimates for the derivatives of harmonic functions would imply that
{a\)-χ\Daφ{z)\ < cθ{cθ)d~2 for every multi-index a with 2 < \a\ < d,
which for small enough θ = θ(n) contradicts (2) and the fact that each
component of D2φ is a polynomial of degree < d - 2.

We now fix θ = θ(n) so that (1) holds, and we proceed to prove the
theorem.

Take any y e B\(0) with \Dφ(y)\ < (θε)d~ι. Since each component of
D2φ behaves like a homogeneous polynomial of degree < d-2 near infinity,
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the growth estimates of the appendix, together with standard estimates for
the maximum of a harmonic function in terms of its L2 norm (over a larger
set), imply

(3) ε sup \D3φ\+ sup \D2φ\ < cσ'\\ + 3σ)d sup \D2φ\
B(\+σ)ε{y) B(\+σ)ε{y) B(l-σ)ε(y)

< cσ~ι(l + 3σ)d sup \D2φ\
BΛy)

for σ e (0,1/4], where c = c(n).
Notice also that if β e (0,1), and xx € Bε(y) is such that\D2φ(xι)\ =

Bε(y) \DlΦlthen b y (3) w e S e t

(4) \D2φ(x) - D2φ{xx)\ < cβσ'\\ + 3σ)d\D2φ(Xι)l x e Bβε(Xι),

so that

cβσ-\\ + 3σ)d <\l2^\D2φ{xx)\<2 inf \D2φ\.
Bβe(X\)

Thus if we select

(5) σ = c-χd~\ β = γd~ι

for suitable c = c(n) and γ = y(/i), then

(6) \D2φ(Xι)\<2 inf \D2φ\.
B i X

Also if x e Bε(y), then trivially for any unit vector τ e Rn

\Dτφ(x)-Dτφ(y)\<ε\D2φ(xι)\,

and hence

\Dτφ{x)\<{θε)d-χ+ε\D2φ{xx)\

<cε\D2φ(x{) by(l)

<cε inf \D2φ\ by (6),

so that

(7) \Dτφ(x)\ < cε\D2φ(x)\ at each point x e Bγεμ(x{),

where γ = y(«) (as in (5)).
By (4) and (6) we also conclude that if τ\, τι are any pair of unit vectors

in Rn, and x e Bγεμ(x\), then

(8) \DXχDXlφ{x)-DτχDτiφ{xx)\ <cγ inf \D2φ\.
Bd{X\)
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Next, let (9y be a collection of orthonormal bases of R" such that for
any orthonormal basis {τi, ,τn} of Rn there is an orthonormal basis

{ίl, An\^@y With

(9) \τj-τj\<γ/d, j=l, ..9n.

We can, and we shall, choose such a set (9y in such a way that

(10) number of elements in ffy < cγι~ndn~\ c = c(n).

With X\ e ~Bε(y) as in (4) above, let τ\9 , τn be an orthonormal basis
of Rn such that

\DτιDτιφ{x{)\= . max \DTjDτjφ(x{)l
7 € { 1 , ,Λ>

\DτιDt2φ(xι)\ = max \DτjDτjφ(Xι)\,
; € { 2 , ,Λ}

DT(Z)Ty^( «i) = 0, iφj.

Furthermore since Σ"= 1 DτjDτjφ = 0, we have

Then by (8) and (9) we can select an orthonormal basis fi, • ,τn e
such that

\Φ\\{x)\>c~ι max \φjj(x)\,
j € { \ n }

(Π) \Φ22(x)\>c~ι

\Φu(x)\<cγ\Φn(x)\, iφj,

for each x € Bγεμ(xι), where we use the notation φij{x) =
Now by (6), (7), and (11) we have, with φj = Dtjφ,

(12) c - ι < 2 2 2 2

x {\Dφ{\
2{x)\Dφ2\

2{x) - (Dφiix) • Dφ2(x))ψ2

for each x e Bγe/d(xι), provided we take γ = γ(n) sufficiently small.
Define / to be the Jacobian of the transformation x ι-> {φ\(x),φ2(x)),

x e Bγe/d(xι), that is, / = y/\Dφι\2\Dφ2\
2 - {Dφx • Dφ2)

2. In view of (12)
we have

(13) c-1 < ε2{φ\{x) + φl(x))-ιJ(x) at each point x e Bn/d(Xi).

Also by (11), (6), and (1) we have \φ22(x)\,\Φn(x)\ > (θε)d-2 for x e
Bγεμ(xι), and hence

(14) \Φ2\,\Φι\>c-ιγd-ι(θe)d-1
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on a subset A of Bγε/d(x2) with &n(A) > c-ι(γε/d)n, where c = c(n).
By (13) and (14) we deduce from the coarea formula [3, 3.2.22] that

c-id-nεn<ε2 / (s2 + ί 2 )- '

"~2({x € Bε(y): φi{χ) = s,φ2(x) = t})dsdt,

for suitable c = c{ή).
Now select a maximal pairwise-disjoint collection of balls

{Beί2(yj)}j=u-M with yj ε {x € 5,(0): \Dφ(x)\ < (θε)d-1}, and sum
over j after replacing y by yj in (15). Then (keeping in mind that &y has
< cdn~ι elements) we get

^"({xeBiiO): dist(x,{\Dφ\ < (θε)d-1}) < ε})

<cd2"-ιε2

J{c->ε) i Y
• max^"-2({x e B2(0): {φx(x) - sf + {φ2(x) - t)2 = 0})dsdt.

The required inequality now follows from (10) and Theorem (2.1) because
dim{jte5 2 (0): Φ\(x) = s,φ2(x) = t} < « - 2 f o r a . e . (s,ή €(0,1) x (0,1)
by the coarea formula, and because f£ f£ {s2 + t2)~x dsdt < clogα" 1

for each α e (0,1/2).

4. Proof of Theorem (1.7)

Notice that by translation x ι-> x - xo and a homothety x ι-> PQXX,

so that BR(XO) is transformed to i?/*,(0), R\ = ε~ι, the equation is trans-
formed into an equation of the form

(4.1) Au = aD2u + bDu + cu o n BRι(0)

with

(4.2) ι

BRΪ

where δ is as in (1.6).
We use the notation that if B = Bp{y) c BR{ (0), then

1/2
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Of course then by (1.5) we have

(4.3) O<|M|o,*,< 2</||t/||o,*1/2.

We assume

(4.4) δ(ε-ιp0)<e3d,

where ε > 0 is to be chosen. Then the growth estimates of the appendix
give that we can select βo = εo(n) > 0 such that if ε < εo then

(4.5) 0<\\u\\y,p<22d^2\\u\\yiP/2

for every p < R\ - I and y e B\(0). Indeed it would suffice merely that
δ(ε~ιpo) < εd for suitable ε = ε(ή) for this.

(4.6) Remark. Notice this implies that the order of vanishing of u at
any such y is < Id + 1/2, because by iteration it gives

By only a slightly more complicated argument (still based directly on (*)
of §1 and the growth estimates of the appendix), we can show that the
order of vanishing of u at such y is < d + θ for any given θ > 0, provided
y G BPι(0) with p\ small enough, depending on θ,d.

We shall need the following lemma concerning approximation by har-
monic polynomials.

(4.7) Lemma. There is βo = εo{n) such that ifε < εo, (4.1)-(4.4) hold,
and B = Bp{y) with p < 1 and \y\ < 1, then there is a harmonic polynomial
φB of degree < 3d such that

where UB is defined by UB(X) = IM|~ «̂(>> + px), and c = c(n).
Remark. A similar result holds (by essentially the same argument) with

φB a degree d harmonic polynomial, provided we are willing to assume the
stronger condition δ(ε~dpo) < ε5dl in place of (4.4).

Proof of Lemma (4.7). v = uB satisfies an equation of the form

(1) Av = a -D2υ + b Dv + cv

on BRι(0), with \ά\ + \b\ + \c\ < δ{ε~ιpQ) and R{ = e~ι. By definition of
UB and by (4.5) we have

(2)

Let ψ be the harmonic function on BRι/2 with ψ = u on dBR]/2- Then
v = v - ψ satisfies the equation

(3) Aϋ = άD2v + b'Dv + cv.
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By the Hlp estimates for elliptic equations [5, Theorem 9.11] (applied to
both (1) and (3)) and by (2) we see that (for ε = ε(n) sufficiently small)

(4) \uB - ψ\a{BRι/2m < (cRι)2d+ι/\ c = c(n).

By standard estimates for harmonic functions (keeping in mind that
\\ψ\\θΛ/2 < (cRι)2d^2 by (2) and (4)), we conclude

(5) \ψ-Ψd\a(B2m<cdR^d,

where ψd denote the terms in the Taylor series expansion of ψ about 0 up
to and including terms of degree 3d.

It then follows that

< WB - Ψ\CHB2(0) + \ψ-

< \uB -

by (4), (5), and the H2* theory. Thus by (4.4)

with φB = ψd.
We shall also use the following "nodal set comparison lemma"; the

reader should keep in mind that this is going to be applied with wλ =
const uB, w2 = const φB, with uB,ΦB as in the above Lemma (4.7).

(4.8) Lemma. There exists ηo = ηo{n) e (0,1/2] such that with η €
(O,//o), ifwuw2 e Cx>χl2{B2{0)) with K|Cu/2 < 1, j = 1,2, and if
\w\ -w2\o < η5/2, then

βrn-\B2-η{<d)n{w{=0,\Dwx\>η})

< (1 + Cy/η)Jrn-{(B2(0) Π {w2 = 0, \Dw2\ > η/2}).

Proof. For small enough η (depending only on n) the following ar-
gument is valid; c will denote any constant depending only on n. Let
So = w-{{0},^>{ = {w{ = 0, \Dw{\ > η}, S2 = {w2 = 0, \Dw2\ > η/2}, and
take any x e B2-η(0) Π Si. Since \WJ\CW < 1 and \w{ - w2\a < η5, we
have

\Dwx \>η-η/5> 3?//4 on Bη2/25(x),

\Dw2\ >η-η/5-η5> 3η/4 on Bη2/25(x)

and, defining Vj = \DWJ\~1DWJ, we calculate

( 2 ) \vjiyι)-vjly2)\ <cη~{\yι -y2\
ι/2 <cη{/2

9

foryuy2eB2η3(x), j= 1,2,
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(3) |i/,00 - v2(y)\ < cη-{\Dwx(y) - Dw2(y)\ < cη\ y e B2η,(x).

In particular by (2) and (3) we have

(4) \v2{y)-Mχ)\<cηι/2

9 yeB2η>(x).

We note that

(5) S2ΠBη4(x)φ0,

because, again using |wi|Cu/2 < 1 together with (1) and the fact that

and hence, since \w\ - w2\C\ < //5/2, we have

w2(x + rfvx (x)) > 0, w2(x - rfvx (x)) < 0,

and hence w2(x + θη4v\(x)) = 0 for some θ e (0,1), thus establishing (5).
Next, with x e S\ Π B2-η(0) as above and with Tx denoting the hyper-

plane containing x and normal to v\(x), we claim

(6)

Sk Π Bη>(x) = Bηi(x) Π graph^ψ*

= Bηi(x) n{y + ψk

x(y)v\{*) y eτxn Bn*{x)}9 k = 0,2,

where ψ% e Cι(TxnBηi{x)) with

(7) \Dψk

x{y)\<cηχl\ k = 0,2.

Indeed by (2) and (4) it is at least clear that Sk Π B2ηi(x) is contained in a
union of such graphs over the larger domain Tx π B2ηi(x). An elementary
argument using (1) and the mean-value theorem for functions of 1 variable
then justifies (6) and (7).

Notice that (5) and (7) guarantee that

(8) \ψ*[y) - ψ2

x{y)\ < cηA + cη3η1'2 < cη1'2.

The required area comparison is now fairly evident from (6), (7), and (8).
Specifically, let {Bηi/4(Xj)}j=\r..t# be a maximal pairwise-disjoint collec-
tion of balls with Xj e S\ Π52_^(0). Then

(9) {Bη>,2(Xj)}j=L 9N covers Sx nB2-η(0)9

and there is a c (= c(n)) such that if & c {1, , iV}, then

(10) ^je.^Bη^Xj) φ 0 => & has < c elements.
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Let φu , ΦN be a partition of unity for 5Ί n ~B2-η(0) with

(11) support 0, c Bηi(Xj), φj >c~ι on Bηi/2, and \Dφj\ < c/η3.

Then

ί<Σί
J = l JSoΠBJ = l JSoΠBηi(Xj) 7 = 1 JτXjΠBη3(xj)

= Σ / f ibf
j = ι JτXjnBηi(Xj) j=zl JτXjnBη3(Xj)

where (in the notation of (6))

Ffiy) = Φj(y + ΨΪj{y)Mχj))y/ι + \Dψ!lj{y)\2, * = 0,2.

In view (6), (7), (8), (10), and (11) we conclude that

as required.

We are now going to give the proof of Theorem (1.7). We let η =
(cε)d/5/2, with ε < εo(η) and εo(n) sufficiently small so that (4.5), (4.7), and
(4.8) above can all be applied. Keeping in mind the affine transformation
described at the beginning of this section, we see that for (1.7)(i) it suffices
to prove

jrn-ι(u-ι{0]nBι(0))<cd.

First, by Lemma (4.7), for each ball B = Bp(y) with p < 1, y e u~l{0}n
2?i(0), we can find a harmonic polynomial φB of degree < 3d such that

(i) \uB-Φ

Since y e u~ι{0}, by subtracting a suitable constant from φB, we can also
arrange, without upsetting the inequality (1), that φB{0) = 0, and, since
\\u\\y,2p < c22d\\u\\y,p (by (4.5)), we have by the H2p regularity theory,

(2) l w #lc' !/2(52(0)) - c ' 1̂  lcu/2(j*2(0)) - c -

Notice that by (3.1)

(3) <rn-ι{(φBΓι{0} Π B2(0)} <cd, c = c(n).
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Notice also that, for small enough ε, (1), (2), (3) and Lemma (4.8), with
η = (cε)d/5/2, W\ = c~duB, w2 = c~dφB

9 imply

*"ί-ι{*ϊι{θ}nBιn{\DφB\>η}}

(4) < *"-l{uil{0} Π Bx Π {\DuB\ > η/2}}

< 2Jrn-ι{(φBΓ{{0}nB2n{\DφB\ > η/4}} < cd.

Also by (1)

(5) \DuB\-ι{0}[nB{ Π {\DφB\ >η} = 0.

Now we proceed to inductively define finite collections J^δ,^, of
open balls, each collection covering B\(0)Π\Du\"1{0}Πu~ι{0}| and having
centers in B\(0) Π u~ι{0} as follows:

Assume now that / > 1 and that J?o, ,^/_i are already defined such
that each ball in S?k has center in B\ Π u~ι{0} and radius εk~ι, and such
that

(6) UBs9ιB DBXΠ \Du\-l{0} Π ii

k = 0,1, , / - 1. We now define &\. First for each B = Bp(y) e <9p

ι_ι

(p = ε7"1), choose a harmonic polynomial φB of degree < 3d as in (1),
and let τB: RΛ -• RΛ be given by τB(x) = y + px. Cover u~l{0}nB Γ)
τB{\DφB\ < η} (D u~ι{0} ΠBn \Du\'l{0} by (1)) with a collection S?B

of balls with centers in wι{0} Π B\(0) and radius εp (= ει) such that the
balls of the same centers and 1/2 the radius are pairwise disjoint. Then
let &\ = UBG^_, ^I*-

 N o t i c e t h a t ^ c o v e r s ""HO} n l^wΓHO} Π ^ by
construction, and hence the inductive definition of J?/ is complete.

Since any pairwise disjoint collection of balls of radius ε with centers in
{x G 5i(0): dist(x,{|Zty*| < η}) < ε} contains at most cd2n+2ε2'nlogε"1

balls by Theorem (3.3), we have

(7) number of balls in &[B < cd2n+h2~n \ogε~ι ^BeSή_{.

Let Nj denote the number of balls in the collection &). Then the above
inequality tells us that

Nj < Nj-ι cd2n+2ε2~n logε"1 V; > 1,

so by induction

(8) Nj < (cd2n+2ε2~n \ogε~ιy V; > 1.

Notice also that by (4) for each B e <S?ι-\ we have

jrn-{{u-{{0}nBnτB{\DφB\ > η}} < cdpn~\
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where p = ει~ι. Then since the collection S^B covers u~ι{0} n B
ΠτB{\DφB\ < η}, we get

(9) * " -

S i n c e Bx(0) c ( U Π ( I W , 5 ) - ( ( J * ^ * ) ) ) u ( n ~ o ( U y 5
and since Πίo(U^/U/? G ^ #) i s covered by {J?=ι<?j for each /, we have
by (9), (8) and the definition of Jtn'1 that

^ ( g i y < led,

provided we take ε such that cd2n+2 εlogε~x < 1/2. Notice that then we
may take ε = εo/d2n+3 for suitable ε0 = &o(n).

From (8) and the fact that each ball in the collection J?/ has radius εj,
we have

< c(cd2n+2εθlogε-χ)j.

By choosing cd2n+2εθ logε"1 < 1/2 (note that this choice of ε—and hence
the choices of p0 for which the required hypothesis (4.4) holds-depends
on 0), and letting j -> oo, we conclude that ^n-2~e(Bi(0) n u~x{0} n

= 0 for each θ > 0, because ^ covers 5i(0) Π u~x{0} n
for each j > 1 by construction.

5. Application to nodal sets of eigenfunctions

Consider a compact Riemannian manifold M with C 1 1 metric and let
0 = λo < λ\ < A2 < be the eigenvalues of Laplacian. Let φj be any
eigenfunction corresponding to the eigenvalue Ay.

According to the result of Donnelly and Fefferman [2, Theorem 4.2(ii)]

for p < JR, where c > 0 depends only on an upper bound for the sectional
curvatures and an upper bound for diamΛf and where R depends only
on an upper bound for the sectional curvatures. Here Bp(p) denotes the
geodesic ball centered at p and having radius p. Of course the constant R
can be selected so that we also have

: 1, i,j,k= 1, ,n,

where x denotes normal coordinates with origin corresponding to p.
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(5.3) Theorem. ^n~ι(φ~{{0}) < cλ^ with c a constant depending
only on an upper bound for the sectional curvatures ofM and diamM.

Remark. A much more precise upper bound is proved in the real an-
alytic case in [2].

Proof of Theorem (5.3). In normal coordinates x, by (5.2) the equation
Aφj = -λjφj takes the form of equation (1.1) with σ(t) = /, μi = c(n),
μι = \λj\. Then by (5.1) we have the hypotheses of Theorem (1.7) with

d = Cyfλj and with po = cλ~c* J. Then Theorem (1.7) applies to give the
bound

for p < cλj cv J and any p e M. Since we can cover M by a collection of
< c vol M/pn such balls, we have the required result.

Appendix: Growth estimates

Here we record the growth results concerning elliptic equations which
were needed for the present paper. (Somewhat more general, but less
precise, estimates were introduced in [9], [10].)

We suppose

(A.I) Au = a- D2u + b-Du + cu

on a ball BR{0) c R", and for p e (0, R) let

(A.2) δ(p) = sup \a\ + p sup \b\ + p2 sup \c\.
BP(0) Bp(0) Bp(0)

Then we have:
(A.3) Theorem. For any given θ e (0,1) and any q e [l/2,oo) ~

{1,2, }, there exists ε = ε(n, 0, dist(#, {1,2, })) such that if (A. 1) holds,
and po € (0,R) is such that δ(p0) < εq (δ(p) as in (A.2)), then for any
p€(O,Po]

\\u\\>θ«\\u\\p=>\\u\\θ2p>θ«\\u\l

where we use the notation \\u\\2

p = p~n JB ( 0 ) u2.

Proof First note that if δ(p) = 0, then u is a harmonic function and
in this case (using expansion by harmonic polynomials) we have

(1) \\u\\2

p = Y^a2p2\ pe(0,R),
k=0

for suitable constants ak. In this case the lemma follows immediately
because if /(/?) denotes the series with nonnegative coefficients on the right
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of (1) then log/(e~') is a convex decreasing function of t, as one checks
by direct computation. (We emphasize that this latter fact is true simply
because the coefficients in the power series expansion of / are nonnegative
and has nothing intrinsically to do with harmonic functions.) This in
particular gives

and equality for some p\ < pi < P3 < R implies that

= const, 0<σ{ < σ2 < p3,

which means f(p) = const pι for some constant /; / must be an even integer

by(i)).
Also by an obvious compactness argument (using (2) and the normal-

izations f(pi) = l,/>2 = 1) we deduce that for any given α 2 > «i > 1
and any given q > 1/2, ήr £ {1,2, } 3ε = ε(au α 2, dist(#, {1,2, })) > 0
such that for any 0 < p\ < pi < pi < R with αi < P2/P\ < &ι and
«i < P3/P2 < <*2 w e have

In the general case δ(p) < εq, we approximate by the solution v of the
equation for δ = 0, having the same boundary values as u on dBa-ιp(0)9

with a > 1 suitably close to 1. According to the H2p regularity theory we
then have

\\u-υ\\a-lp<cδ(p)(a-l)-c\\u\\p

with c = c{n). Thus using this together with (3) we easily conclude the
required result (A.3).
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