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2 E.M. Landis

According to the original plan the subsequent article should consider
the same problems, but now for the case of several independent variables.
However, circumstances so turned out that this subsequent article appears
with a great delay. In the time which has elapsed, new success has been
achieved in this field, and it appeared appropriate to alter somewhat the
original plan: to restrict ourselves to the elliptic equations only, and
instead, to include some new problems (on the behaviour of solutions of
self-adjoint equations with non-smooth coefficients, the theorem con-
cerning three spheres, and some others), and to devote another article to
the parabolic equations.

In this article, we consider exclusively the second order linear
elliptic equation :

2 a;, (*)

i, k=1

%u
(,b’i 8x“

+ ¥ s, (:,:)3_; S u=0. (1)
i=1

It is always supposed here, that the sign of c(x) is taken so that the
maximum principle is fulfilled.

Chapter |
PROPERTIES OF SOLUTIONS WITH CONSTANT SIGN

§0. Introduction

This chapter concerns properties of those solutions of second order
linear elliptic equations, which preserve a constant sign in the domain in
which they are determined. We may assume that this sign is positive.

One of the principal facts,
characterizing the behaviour of posi-
tive harmonic functions, is Harnack’s
inequality: let a positive harmonic
function u be defined in a circle of
radius R, then (fig. 1) at any point
P(r, ®) we have the inequality

R—r w(P) _Rir
Ror>S w0 SR=r"

- where r is the distance from P to the
centre O of the circle.

This inequality shows that far away
from the boundary of the domain, a
positive harmonic function changes slowly.

For solutions of the elliptic equation (1) analogous theorems have the
following forms:

l. In the case of two space variables, Serrin [1] proved the follow-
ing theorem. Let equation (1) be uniformly elliptic in the circle of radius
R< 1, i.e.

Fig. 1.
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n
Al -
N oapEie

O<a< 2L < : (0.1)

n

Let the remaining coefficients be bounded by a constant A, and let ¢ < 0.
Then, for any r < R there exist positive constants C; and C,, depending on
a, A and r/R, such that in the circle of radius r

C, < % <€, (0.2)
2. For the case of several independent variables the same author [1]
proved the following theorem. Let equation (1) be defined in a sphere of
radius R < 1, let all the previous conditions be fulfilled, and besides,
let the coefficients a;, be continuous at points on the surface of the
sphere and satisfy a Dini condition there: for any pair of points P and Q,
where P is a point of the sphere, and Q is a point of the surface of the

sphere,

tain (P)—a (Q)| < @ (|PQ)), (0.3)

® () ds=A. Then, as before, the inequality

S

where %wds< . Let
'0 N

cg/—;;

(0.2) holds for any r < R, but C, and G, depend not only on ¢, A and r/R,
but also on A.

We note that although very little is demanded here of the coefficients,
(in all, only the Dini condition, and then only on the surface on the
sphere), however, between the theorems of Serrin in the case of two and of
several variables, there is an essential difference in that in the first
case the theorem is generalized automatically to the case of the quasi-
linear equation

n

ou 9%u u
Z aik(-"cvur ’ \ +...=0,

_ ozj ’ 0Oz,0z, / 0x; 0z
i, b=t

but in the second case we have not the possibility of going beyond the
limits of linearity in such a simple way. Such a possibility appeared
after Nash [31] and Giorgi [3] proved, that the solution of a self-adjoint
elliptic equation satisfies a HSlder condition, independently of the
smoothness of the coefficients (a simple proof of this theorem was given
by Moser [4]). Further, Kruzhkov [32], [33] gave a method, allowing the
transfer of the interior estimates for the solution of the elliptic
equation

Yo (e @ g ) +e@u=f@
i, k

to solutions of the equation
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Z%(a{h(x >+Zb :10)a +ec@)u=7f(z), (0.4)
ik

in particular, the estimates of Nash and Giorgi. This method consists in
considering the solution u(xs, ..., x,) of equation (0.4) as the solution
u(x4, «o., %n, ¥) = u(xy, ..., %) of the equation

ETZ;(%M@%)—{-S‘ By (b (:E)y )—*—2 Bz; (b (x)y % >+
ik

+5 (K5 ) Fe@u=1(a),

where the constant K is selected so large that the form
Za;péibp +2b;Ein + Kn? is made positive definite.

By an analogous method one can include lower terms in a non-self-
adjoint equation, and also terms of the form cu + f in an equation con-
taining terms with derivatives only.

Finally, in 1961 Moser [34] proved that Harnack’s inequality holds
for the self-adjoint equation

i:’: % (aik (@%) =0,

D aiptite
D8

with arbitrary measurable coefficients (the equation is understood in the
sense of an integral identity).

The method of Kruzhkov mentioned above, permits the introduction into
this equation of lower terms with arbitrary bounded coefficients.

In the case of harmonic functions an immediate consequence of Harnack’s
inequality is Liouville’s theorem: a positive harmonic function, defined
in the whole plane is a constant. In the general case it will be the same,
if the constant is a solution of the equation, and if Harnack’s inequality
(0.2) is satisfied for a sphere of any radius, the constants C; and C,
depending, for any R, only on the ratio r/R. Hence, for the equation

A

A

app=ay, 0<a<g

o%u
s‘ %k 3x, oy = 0 (0.5)
i, k=1

when n = 2, Liouville’s theorem holds for any coefficients, if only the
inequality (0.1) be fulfilled uniformly (a theorem by Serrin [1]: a
positive solution of equation (0.5) for n = 2, defined in the whole plane,
is a constant).

For n > 2, this was proved under the hypothesis that the coefficients
of equation (0.4) satisfy Dini’s condition at infinity (theorem of
Gilbarg and Serrin [2]).

A few words concerning Liouville’s theorem for the elliptic equation (0.4),
without the hypothesis of uniform ellipticity.

As is known from an example by Bernstein [5] Liouville's theorem, in the
formulation which demands boundedness of the solution on one side, is not true in
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this case. If one demands boundedness of the solution on the two sides, such a
Liouville theorem, in the case of two variables, was proved by Bernstein [5].
Adel’ son-Vel’ skii proved [6], that in this case, Liouville’s theorem is a fact
connected with the geometry of the graph of the function. In fact, he proved the
following theorem. Let f(x, y) be a continuous function, defined in the whole
xy-plane. Let the graph of this function be such that it is impossible to cut off
a ‘““cap” by any plane whatever (i.e. for any linear function ax + by *+ ¢, the
set of points xy, where f(x, y) > ax t by + c or f(x, y) < ax t by + ¢ has not a
bounded component). Then, either f(x, y) grows at infinity not slower than
linearly, or the graph of f(x, y) is a cylinder with generator parallel to the
plane of =xy.

An example by Hopf [7] proves that, in the case of three independent
variables, this is indeed not true, even for the solution of the elliptic equation
(0.4) (without the condition of uniform ellipticity). For uniformly elliptic
equations, the two-sided theorem of Liouville was proved by Gilbarg and Serrin [2]
under the hypothesis that the coefficients in the equation have limits at infinity.

We return to Harnack's inequality. For an unbounded domain, not coin-
ciding with the whole space, we obtain from it an upper estimate for the
rate of growth and decay of a positive solution in dependence on the
“width” of the domain. Thus, if the solution of equation (1), for which
Harnack’ s inequality is correct, is positive in the cylinder

n n
Elzxf.< h%, x4 > 0, then, in the narrower cylinder < xf.< hZ < h2,
i= i=2

this solution grows and decays not faster than the exponential:

%fe"Mx1<:u(x“...,zn)<:CeMﬁ.
The constant M depends on h, hi/h and on the constants in Harnack’s
inequality (0.2).

The solution, determined inside a cone, will, in a narrower cone, on
going to infinity or on approaching the vertex of the come, increase and
decrease not faster than according to a power, the index being proportional
to the angle at the vertex.

Estimates of a similar kind are ob-
tained at once by applying Harnack’s in-
equality to a sequence of spheres, lying
in the domain, and such that the centre
of each sphere lies inside the previous
one, and is situated inside a sphere con-
centric with this previous one, and
having its radius smaller in a given
constant ratio (for example, one half).

We shall not, therefore, dwell on them
in more detail.

For positive solutions, vanishing on Fig. 2.
the boundary of the domain (if the domain
is infinite) or on part of the boundary, one can obtain an estimate on the
other side: the narrower the domain, the quicker the solution increases or
decreases in it. Corresponding estimates follow from such a fact. Let a
domain D, situated inside a sphere of radius R < 1 (fig. 2), contain the
centre O of the sphere, and have limit points on its periphery. We denote
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by I' that part of the boundary of the domain, which is strictly inside
the sphere. Let the solution u(x) of equation (1) be defined in D, be
positive in D, and vanish on I'. One must make the assumptions with respect
to the coefficients as in the paper by Serrin mentioned (but to demand that
Dini’s condition be satisfied, now not on the boundary, but at all points
of space).

Then, because the ratio of the measure of the domain D to the volume
of the sphere is smaller than some constant € > 0, depending on a, 4, A
(the number A is defined by the Dini condition), it follows that

sup z (x) > 2u (0).
xeD

For a self-adjoint equation (as in the case of Giorgi) a similar
statement can be proved under the assumption of measurability only of the
coefficients.

This statement makes it possible to obtain a theorem of Phragmén-
Lindeldf type [30), and also to obtain a lower estimate for the rate of
growth and decay of the solution in the neighbourhood of a boundary point,
depending on the structure of the domain in the neighbourhood of this
point.

In the first chapter the principal place is taken by the establishment
of this fact of the growth of the solution in a narrow domain (lemmas 3.1
and 7.1), which is then applied to estimates of the growth or decay of
the solution in domains of different form.

§1. Conditions imposed on the coefficients of the equation.
Some notations

In this section we consider the equation
0%u -1
Lu= Y aih(x)a—xié;—, b, (x)——*—c(x)u_O (1.0
i, k=1 =1

Concerning the coefficients, we shall suppose that they are measurable
have their moduli bounded by unity, and satisfy the inequalities

_zliaikgi‘gk}a ;‘_: g, a>0, (1.1)
and
¢ (2)< 0. 1.2)

That we bound the coefficients by unity, and not by some other con-
stant, clearly plays no part whatever, since we can divide the entire
equation by this constant, altering correspondingly inequality (1.1).

Besides, in §83-6 of this chapter, we suppose that the coefficients
a;; are all continuous, and have the common modulus of continuity w(r),
satisfying the condition
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IGE
w(r)ar

r

=A < 0,
)
where d is the diameter of the domain in which the equation is defined (d
may be infinite).
We denote equation (1.0) together with these conditions by (1.0.A).
In future Qp will denote the n-dimensional sphere with centre at the
origin of coordinates O, and radius R.
By uiE we denote the k-dimensional Hausdorff measure of a set E in n-

dimensional space. In particular, u,F is the Lebesgue ri-dimensional measure
of the set E.

§2. Continuation of a quadratic form from a domain to the whole space.

In this section we consider the following problem. There is given a
domain D C R,. In this domain the coefficients of a quadratic form are
given

2 (o) B (2.0)

Let each of the coefficients a;r(x) be uniformly continuous in D, the
quadratic form satisfying the inequalities

a@l<t Y au@Eh>a X & zeD. 2.1)

Is it possible to continue the coefficients of the gquadratic form to
the whole space, so that the modulus of continuity of each of the coeffic-
ients in increased by not more than a constant multiplicative factor
(depending only on the dimensionality of space), and so that the inequality
(2.1) is preserved?

This problem has a positive solution. To obtain it, we consider the
following algorithm of continuation of a function from D to the whole
space.

Let f(x) be a function uniformly continuous in D, and its modulus of
continuity w(r) be a convex function®

o (r+r)<o(r)+o(ry), r, r;>0.

We continue f(x) by continuity in Zi and let x be a point of R,, not
belonging to D. _

We denote the intersection of D with a sphere of radius r and centre
at the point x by Dx(r), the n-dimensional measure of D,(r) by m,(r), and
the distance from x to the domain D by py. We put
1 The assumption of convexity of W(r) is essential so that the function can be
continued with increase of modulus of continuity by a factor not depending on
the domain.
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w | § fay
S D« (r) dr

r®my (1)

e o L— : (2.2)

° dr
=
Qx
Let xo be any point belonging to D, and |x - Xo I= 5. We prove that

Y have |f(z) —f(zp)| < 4o (8). (2.3)
ol § fdy
D: ()
- S rmy (r) dr
fx)—f(zg) =& = —1(z) =
S ar
Qx T
m[DS( )f(y)dy m[ § fEdy
o (r Dx(r
S rmy (r) dr S rmy (r) dr
= Q¢ _ Qx
d d
|+ %
Qx ox
or
w[ § 11 @—1 (zo)ldy]
" N r3my. (r)
[f(2)—f(zo) | <& — . (2.4)
dr
&
Qx

From the convexity of the function w(r) it follows that
1@ —f@)I<or+8<a@) {[ 5]+ 1}+o@)
where r = |x -y L or

| @) — f (@) | < 0 (8) 5 + 20 (8). (2.5)
From (2.4) and (2.5) we get

1F@) — e | <22 & 420 (5) = 0 (8) & +20(3),
‘ dr

Lo
3|
I3

X

and since p; < 6, then
17 (@) —f(z0) | < 4o (8).

We denote now by Q* the sphere of radius p, with centre at the point x,
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and we complete the definition of the function f at the point x ¢ D as

follows: _
\' f () dy

flz)=* e (2.6)

We shall prove that
|f(z) —f@) < Co(|z,—z,]),
where C = 160n, for all pairs of points x,, x, € R,.
Consider first the case when x, € D and x, € R, \D. We have
§ Ty § 1T —1(z1)ldy

@
0 1 (1)

(@) —f(z) | = G ;

since Iy—x2|$ Px, € ng—xil. then
ly— & < 2|z — 24|,
and from the inequality (2.3) we get
Fo) — Fz) 1< 4o (2] 2y — 2, ) < Bo (|7 — 24| ),

{ 60 (|2~ 2,])dy
(2 — Ha) | < e

=80 (|7, —2,]). 2.7)

We now turn to the case where both x, and x, are outside D.
We denote '12 - x5 |= 6,_ and let Pxy 2 Pxoy If Pxy € 6, then,
denoting by xo the point of D nearest to x,, we have

|2, — 24| < 9, [Ty — 24| < 20
and in view of inequality (2.7)

f(z)—F(z)|<|f(2y) —F(zo) |+ {F(z) — F (@) | <
<80 (20)+ 8w (d)= 24w (8). (2.8)

If, however, Py, > 6, then, denoting as before by xo the point of D
nearest to x,;, we find that for any point y € Q*1{] Q*2

[y —Zo| < 40y,
and in view of (2.3), for any such point y one has
| F (1) — 1 (20) ] < 4o (4es,) < 160 (@)-
We put 9(y) = f(y) ~ f(x0). We have

lo(y)|<160(ey) 1if yeQ™ | Q™. (2.9)
Then
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f(x3) — [(21) = [ (Z3) — F(Z)] — [f (21) — f (%0)] =
§ To—f@dy  § For—f@ldy §oewdy | emdy

— sz . Qxl —_ sz . Qxl _
BnQ pnQ™ PnQ™ pnQ
{owa— § ody

— Qx2 Q*1 1 . 1 d _
T ) | v
{ oewady { owdy
_ QY2 Q%1 - QX1\ Q*2 1 _ 1 . '
= Q¥ U0 ’+‘< 1nQ= Q™ ) 5 o (y)dy.

Qxs

We estimate the modulus of each of the three terms on the right-hand
side of the last equation

§ oy
Q*2N Q%1 160 (Qxl) Pn (sz\Qxl) < 16w (Qal) GnQn——iZé - 32n(0(@x1) 8 (2 10)
PnQ™ pnQ ) ©n, = Ox ' .
Here w, and O, are respectively the volume and area of the surface of the
unit n-dimensional sphere. The second term is estimated similarly:

§ oWy | $210 (010
Q¥ (X2 N0 @y, 2 11
< . .
G ]\ = (2.11)
Finally
LU ) LIS 16 . o<
'<p«nQ’°‘ o Q > S (p(y,dy‘ Q7 m,1921> 6w (Qx) ©,0%, <
- i6no (0, ) O
o L g2 212
16 o © (Qx,) < o, { )
Combining (2.10), (2.11) and (2.12), we get
80nw (0,.,) (5 80nw (8) “ +1 4
() —f (@) | < l® & ) < 160w (8).  (2.13)

Qxl QI 1

In conjunction with (2.7) and (2.8) this shows that for all x; and x,
belonging to R,, we have the inequality

[f (@) — f(z1) | < 160n0 (|2, —24]). (2.14)

Our algorithm of continuation of a function assigns to any function
f(x), uniformly continuous in D, a function F(x), defined in R,, and coin-
ciding with f(x) in D. We denote by A the operator carrying f into F:

F = Af.
From (2.2) and (2.6) it follows that the operator is linear, and
inf f (z) << Af < sup f (2)- 2.15)
xeED xeD

We can now concern ourselves with the continuation of the quadratic
form.
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LEMMA 2.1, Let the coefficients a;; of a quadratic form (2.0) be
defined in a domain D. Let the coefficients a;p (i, k=1, ..., n) be
uniformly continuous in D, with a convex modulus of continuity w;p(r), and
the quadratic form satisfy the inequality (2.1). Then it is possible to
continue the coefficients of the quadratic form to the whole space so that
the modulus of continuity Qi3 (r) of the coefficient Aip(x), the
continuation of aik, satisfies the inequality

Q;, (7) < 160nw;, (k) (2.16)

and for the continued quadratic form we have the inequalities

Anl<t, D A @th>a I8 zER, (247

1)

PROOF. We put A;p(x) = Aajp(x), where A is the operator of continua-
tion previously constructed. The inequality (2.16) is fulfilled in
consequence of (2.14). Because of the linearity of the operator A

n

; 21 Ay (2) Ei8p = ; k2=1 §:Erday, ()= A ; k2=i ap (%) &8,

Applying inequality (2.15), we get

n n
_ D) A () Eike ‘ > ai (@) Bk
illf ‘l,h=ln }Inf 1,h=1n >a,
R €D
x€Rn Z Ef X E §?
i=1 i=1

the inequality |A;i |< 1 follows immediately from (2.15), and the lemma
is proved.

If now we have the equation (1.0), whose coefficients a;p are
uniformly continuous in D, then this lemma, evidently, permits the
continuation of this equation to the whole space, so that the inequalities
(1.1), (1.2) are preserved, and the modulus of continuity of the coeffic-
ients increases not more than 160n times. It is here assumed that the
moduli of continuity are convex functionms.

§3. The principal lemma

In this section the following restrictions will be placed on the
coefficients of equation (1.0).

The coefficients a;; (i, k=1, ..., n) have a common modulus of
continuity w(r), which is a convex function, and satisfies the condition
¢ o
w{r
|28 ar=a< o, (3.1)

Q
where d is the diameter of the domain D, in which the equation is given.
We shall use the following result of Serrin [1]. Let the equation
(1.0.A) be defined in the sphere (g, R < 1. Let Sp be the surface of the
sphere Qg. Then, there exists a function K(x, x'), x € Qp, x' € Sg, such
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that:
1) for any function @(x'), defined and continuous in Sg, the function
1

U(x)zmmsa SSR Kz, zY¢(z')do
satisfies the condition
Lu< 0; 3.2)
2) lim v(z) = ¢ (2);
3) O<K(z,z')<<A, 2 €S8pg, (3.3

where A is a constant depending on the constant a of the inequality (1.1),
on the constant A of the inequality (3.1), and on the dimensionality n of
the space.

We now prove the following lemma.

LEMMA 3.1 (principal lemma). Let a domain D be situated in Qp,
R £ 1, contain the centre O of the sphere, and have limit points on the
boundary of the sphere Sgp. Let I' be that part of the boundary of the
domain, which lies strictly inside the sphere Qp.

There exists a constant M, depending only on the constant & of
inequality (1.1), the constant A of inequality (3.1) and on the
dimensionality n of space, so that if

Bn-a1Qr
poD < (3.4)

and in D the equation (1.0.A) is given, then any positive solution of it
u(x), given in D, continuous in D, and vanishing on I', satisfies the
inequality

u(0) < % mEan u(z). (3.5)

PROOF. From the inequality (3.4), it follows that there exists a
number r, 0 < r < R, such that, if Q, denotes the sphere with centre at
the point O and radius r, and S, is the boundary of this sphere and [, is
the intersection S,D, then

1
p’n-lrr < ™M p’n-lSr' (36)

We now, according to lemma 2.1, continue the equation (1.0.A) from the
domain D, = Q, (1D to the sphere Q,, so that inequalities (1.1) and (1.2)
are preserved, and the modulus of continuity of the coefficients is
increased by a factor not larger than 160n. Then, (r) denoting the
modulus of continuity of the continued coefficients, we get

d
{28 4r < 160ma.
0
We put
, { u(z) if z'e€l,,
0 it z'eS, \ I,
Further, we put
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v(z) =

i 15 g (z, ') o (z') do,

Sr

where K(x, z') is the kernel constructed for the sphere Qr and the
continued equation, and having the properties 1), 2), 3).

The boundary of D, comsists of I, and points belonging to I. On I', we
have v(x) = u(x), and at points belonging to I, u= 0, v(x) > 0, and hence
v(x) > u(x). Hence, the inequality v(x) > u(x) is satisfied everywhere on
the boundary of D.. Whence, from (3.2), it follows that

u(@)<v(z) in D,.

Hence

u(0)< U(O)——pn 5 S K (0, 2')¢p(z")do.
8

r

Then, because of the inequality (3.3)

d = max u (z
n- lSTSK(O .’l))(P(l') o< meaxu(x) M xED( )

Sr

and, putting M = 24, we arrive at (3.5).

In the paper [8) (p. 24), we constructed an example, showing that the
restriction placed on the size of the radius R of the sphere Qp is essen-
tial for the correctness of lemma 3.1 for n = 2. Of course, such an
example is easily constructed for any n.

To ensure that the lemma remains true for any R (and the constant M
does not depend on R), it is necessary to place restrictions on the
coefficients b;. The simplest of all is to put b; = 0; here we shall assume
this. Further, we put ¢ = 0, and consider the equation

n
%u
D (@) o (3.7)
i, k=1
The transformation

reduces this equation to the equation
n n

Z 1h(Rx)axa' = Z A‘h(x)a:c aI =0

i, k=1 i, k=1

with the same constant & in the inequality (1.1). This transformation
changes the sphere Qp into a sphere of radius 1, and preserves the ratio
pnD
wnQp

Unfortunately, this transformation alters the modulus of continuity. In
order that the inequality (3.1) should be satisfied for the transformed
equation with the constant A, not depending om R, we require that for the
original equation there should be fulfilled the inequality
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2R ( ) A

w(r
S—r—dr<—R . (3.8)
0

We denote equation (3.7), together with condition (3.8), by (1.0.B).

For such an equation we obtain the lemma.

LEMMA 3.2. Let Qg be a sphere of arbitrary radius R, with centre
at the point O. Let D be a domain, containing the centre of the sphere,
and having limit points on the boundary of the sphere. Let I' be that part
of the boundary of the domain D, which lies strictly inside the sphere Qp.

Let equation (1.0.B) be given in D, and a positive solution u(x) of it
be known, continuous in D, and vanishing on I'.

There exists a constant M, depending only on the constant & of the
inequality (1.1) and on the constant A of the inequality (3.8), such that
from

p,D<""QR,

it follows that

u(0) < —;—ma_)_( u(x).
xeD
The problem of the nature of the conditions, which must be placed on
the coefficients b; so that the lemma should remain true, was investigated
by A.A. Novruzov [9). I shall not dwell here on these conditions. I only
note that the principal of these is the following: We represent equation
(1.0) in the form

n

E 8.7: ‘haxh>+2b +cu—

1, k=1

it is then necessary that the sum 2 b; x; should be positive.
i=1

The presence of R in the denominator of the right-hand side of
inequality (3.8) is an unfortunate limitation. If the coefficients ajj
are differentiable, then this limitation leads to the demand that the
derivatives decrease inversely proportional to R. Evidently, this demand
is not necessary, and is connected only with the method of proof. There
are grounds for believing that for the correctness of lemma (3.2), it is
not necessary to demand anything of the coefficients other than the
inequality (1.1). It would be interesting to establish this fact.

In the case when the equation has the self-adjoint form

n
a u
3 g (angg ) =0,

i, k=1

this is actually so: the coefficients a;, may be arbitrary measurable
functions (the function u here satisfies the equation in the sense of an
integral identity). If the coefficients satisfy inequality (1.1), then
lemma 3.2 is correct. This problem will be considered in §§7-8.
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§U4. Character of growth of a solution in a bounded domain

THEOREM 4.1. Let Qp be a sphere of radius R < 1 with centre at
the point O. Let D be a domain, situated inside the sphere, containing
the point O, and having limit points on the boundary of the sphere. Let I
be that part of the boundary of the domain D, which is situated strictly
inside Qp. Let equation (1.0.A) be given in D. Let, also,

__ WnOr
pD=o0<tndn (4.1)

where M is the constant of lemma 3.1, and let a positive solution u be
decermined in D, continuous in D, and vanishing on I'. Then
t

Rﬂ-i

1

u(0)<e co™ ! max u (z), (4.2)
xeﬁ

where C is a constant depending on the constant @ of inequality (1.1), the
constant A of inequality (3.1), and on the dimensionality n of space.

Q
PROOF. We consider first the case when O < ZL:R"":M We put
1
[ endinn=t
‘]\_[<\4Md> J )

where &, is the volume of the unit n-dimensional sphere.

We denote by Cp (=1, 2, ..., N - 1) the sphere |x|= % We put

m,= max u(r) (k=1,2, . .. N -1,
xEChﬂ])

Let these maxima be attained respectively at the points x*, ..., oV-1.

We put x° = 0, and mo = u(0).
We denote by Q" the sphere of radius R/N, with centre at the point
* k=01 ..., N-1). Let

g=Q*N D.
Let, further, k,, ..., kg be those of the numbers 0, 1, ..., N-1, arranged
in increasing order of magnitude, for which
R\"
Wy <‘ >
N -
Mo < ——37 - (4.3)

The number s of these integers, in view of the inequality
N—1
j - N
2 .80 (44)
k=0
is not less than %N . In fact, in the contrary case, the number of differ-

ent values of k for which one has the inequality
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p‘ngh> M -
is not less than
:/l —1 > ﬁ
2 ~ %
Whence
. R \"
ik Onl w ) n n
. . >£ N _ [OFY 1 . 0aR 4Mcr:0
Z .8 4 M AMN" 17 Mo, R ’
h=0

and we arrive at a contradiction to inequality (4.4).

By the inequality (4.3), for each i (i =1, ..., s), there holds,

the basis of lemma 3.1, the inequality

1
mki < ?max u (x)y
xeghi

and since, by the maximum principle,

max u(z)< my, .,

xEERi
then
_N .
u(Q)y=my < 27 maxu(r) <2 2maxu(x),
xef)
or
Ll 1
1 (uz— In2 pa—1
_ «_[(mnR")fT—T’ -
u(0) <2 2Uams)  Imaxu(x)<e 16¥"' 0" ! maxu(z).
xED xEJ_)
Putting
A
an—1
16.111 —-C,
mﬁ-—_l In2
we arrive at the inequality
1
e

w(0)<e ¢! maxu(r).
xEB

There remains for us to consider the case when

wnQr @nR"
0> parapy = gneaiy -

By the inequality (4.1), according to lemma 3.1, we obtain
u(0) < 27 max u ().

x€D

on

(4.9)
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On the other hand, we find from (4.5)

Hn~1
S
I L S 2-1
Hence, also in this case,
L
R'n-—l
— —
u(0) e " 'maxu(x),
xED
and we obtain in all cases
B
2 u-vl
e
u(0)-<e O mnax u(r).

xXED

The example constructed in §1.1, chap. I of paper [8] for n = 2 shows
that it is impossible in this theorem to omit the restrictions, placed on
the dimensions of the sphere Qp. However, the theorem remains correct for
arbitrary R, if, instead of equation (1.0.A), we consider equation (1.0.B).
Actually, the condition R < 1 in theorem 4.1 is necessary only for the
validity of lemma 3.1; it is not used elsewhere in the proof of this
theorem. But lemma 3.2, analogous to lemma 3.1, is correct for equation
_(1.0. B) for any R. Thus, we have the theorem:

THEOREM 4.2. Let the sphere Qp of arbitrary radius R with centre
at the point O contain a domain D, including the point O, and having limit
points on the boundary of the sphere. Let I' be that part of the boundary
of the domain D, which is situated strictly inside Qp. Let equation (1.0.B)
be defined in D, and let

‘
p‘ul) =0 < _l'l’“':’l‘_/fﬂ ?
where M is the constant of lemma 3.2.
Let, further, a positive solution of the equation be determined in D,

continuous in D, and vanishing on I
Then

n(0)ze (ot max u (z),
xglh

where C is a constant depending on the constant @ of inequality (1.1), the
constant A of inequality (3.8), and the dimensionality n of space.

§5. Theorem of Phragmén-Lindeldf type

We shall say that an unbounded domain D is of the * type with solid
angle size not larger than n", if, for all integers m, beginning with a
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certain one, we have the inequality
pa (DN sz)

, 3.1)
inQym <n (

where Q,‘,,. is the sphere of radius 2®, with centre at the origin of
coordinates Q.

THEOREM 5.1. Let D be an unbounded domain, of the * type with
solid angle size not larger than n ”, in vhich equation (1.0.B) is
defined. Let, further,

2 .
n<-2"M' ("

<
]
~

where M is the constant of lemma 3.2.

Let there be determined in D a solution u(x) of the equation,
continuous in D, and non-positive on the boundary of the domain D. Then,
either 1) u(x) < 0 everywhere in D, or 2), if we put

M(R) =ls:1=pRu (z),

then
lim inf M(lB) > 0,
R i
Kn”__T

where K is a constant depending on the constant ® of the inequality (1.1),
on the constant A of inequality (3.8), and on the dimensionality n of
space.

PROOF. We suppose that there exists a point ¥ € D, such that u(x) > 0.
We denote by G the component of the set of points x € D, at which u(x) > 0,
containing the point x.

Let inequality (5.1) be satisfied for the domain D for all m, beginning

with mo.
We put
M, = max u(x)
| xj=2m"1
x€G

for all integers m > my = max (mo, [loge li | 1+ ).
Let these maxima be attained respectively at the points

™ (m=m+1, m+2, ...).

For each integer m > m,, we denote by Q(') the sphere of radius 2*°*
with centre at the point xz(*). We denote by G, the component of the
intersection G N Q(*) containing the point x(*),

From inequality (5.1), it follows that

pnGm < mnzmn ’
where @, is the volume of the unit n-dimensional sphere, and from
inequality (5.2), that

n (mn)
p’nGm < P_]?[— .
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Applying theorem 4.2 to G, and Q(®), we find

!
g(nh—() ey

1 ] {

M, <e Y (x) =
XEG
i
S T T
e DTl pax (@) (m=my—1, m+2, . ).
xEéhz

Whence, according to the maximum principle, we get

- 1
n 1 1 - 1

an=togn—lyn—1 sonn—1
n M, <e 4TRALL (m = my + 1, m, +2, ).

{.3)

Mm <e

Hence, in turn, we find that
B 17)} _ ))’ll
L
- remti— 1 ' .
M, > e M, (m=my1, m +2, . ..).

By the maximum principle

Ht—ir) logae ny

1 1 1
M (H) > 0/.('11nv1 ]‘4ml — (Zm)/‘(vnn—] e /.('nn—l ]”m]

where 21 < R < 2",
Hence

lo8ae

f

M (R)> a,RM""",

Ny
|

where ¢ - M, ¢ wn'—! and R > 2®1,
Putting

- A0
T logee
we finally get
1

1
M (R)/REV'™" > g, > 0 where R >2"",

which it was required to prove.

COROLLARY. Let B be a n-dimensional solid angle at the origin of
coordinates, cutting off, on the unit sphere, a domain, whose (n - 1)-
dimensional area is equal to M. Let a solution u(x) of equation (1.0.B)
be determined in B, and be non-positive on the boundary of B. There exist
two constants Ky and K,, depending on the constant 0. of inequality (1.1),
the constant A of inequality (3.8), and the dimensionality n of space,

such that, if < 1
N
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either u(x) < 0 everywhere in B, or

1
1

M (R) > R Ka"~!

for sufficiently large R.

§6. Growth and decay of the solution at infinity and in
the neighbourhood of a boundary point

THEOREM 6.1. Let G be a domain, situated outside some sphere Q
with centre at the origin of coordinates. Let G be of the “ type with
solid angle size not larger than n ”. Let, further, I be that part of the
boundary of the domain situated strictly outside the sphere Q. Let
equation (1.0.B) be defined in G, and let m satisfy the inequality

1
N < gmr (6.1)

(M is the constant of lemma 3.1).
Let there be determined in G a solution u(x) of the equation, positive
inside the domain, and vanishing on I'. Then, if one puts
M (R) = sup u(2),
IfclE:GR

either

1

1

lim inf (M (B)/R*""") > 0,
R

or

1
i

limsup (M (R)-R " ") < oo,
R—o0

where K is a constant, depending on @ in inequality (1.1), A of inequality
(3.8), and on n.

The proof is similar to the proof of the theorem of the previous
section. Let z(®), Q('). Gy (m=my +1, my + 2, ...) have the same
meanings as in the previous section. Then, as there, we find that for
sufficiently large m (m > m4)

. 1
_n I S U
M, <e 2" 'Con™ "1 max y (x) (m=my+1,m+2, ...). (6.2)
xEE

Unlike what was done in §5, we cannot hence conclude that the inequality
(5.3) is valid.

Here we proceed as follows: from the maximum principle and (8.2)

there follows the validity of at least one of the inequalities
‘ X

1
M <e seim~tpyg

n n+l

(6.%)
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or
1

1

M, <e ten=ty (6.4)

m-1°
Here, if for some m the inequality (6.3) is satisfied, then for all
larger m this inequality will also be true. Thus, either for 2ll m = m, + 1,
my + 2, ... the inequality (6.4) is valid, or for all m, larger than some
m,, the inequality (6.3) is correct.
Hence, either
M-y
R
M, > ! M, (m=m,+1, my-+2, ...),
or
THy— N
o
M7“<L;~’AC1]"—1M”11 (m=m1+1, ml+2’ .__)_

In the first case

1
1

M (B)/l‘?ffﬂ"‘1 > a, for R>2"

in the second

1
M) RN —a, for R os 2™,
where

iy e

! 1

1 — o

_ L et - heqpn—1
ay=M,r 2 , o ay=M, e ,

log, ¢

which it was required to prove.

One can obtain a theorem analogous to theorem 6.1, characterizing the
behaviour of the solution in the neighbourhood of a finite boundary point
of the domain, in dependence on the size of the part of the domain lying
in the sphere with centre at this boundary point, when the radius of the
sphere tends to zero.

THEOREM 6.2. Let G be a domain, having the point O as a limit
point, Let equation (1.0.A) be defined in G.

Further, let a number T exist, satisfying the inequality

o

URg

where M is the constant of lemma 3.1, and such that, if, for the integer nm,
Q2.4 denotes the sphere of radius 27™ with centre at O, then

Wy ((":}(!‘_{—m) _
——— <
}lr:(!g—:u
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for all m, beginning with a certain one.

Let a solution of the equation, determined in G, be positive inside
the domain and vanish on the part of the boundary situated in the neigh-
bourhood of the point O, except at the point O itself. Then, if we put

M (r)= §upu(m),
=
either

lim inf (M (r) rK"n—i) > 0,

r—{

or

1
1

lim sup (M (r),’rK"n~1) < oo,

r—{

where K is a constant depending on the constant & of inequality (1.1), the
constant A of inequality (3.1), and on the dimensionality n of space.

The proof is almost a word for word repetition of the proof of theorem
6.1, but, since it is possible to employ lemma 3.1 here, instead of lemma
3.2, the statement proves to be true for equation (1.0.A).

§7. The principal lemma for the self-adjoint equation

We shall consider the equation

n

- ad (7
3 <aih (#) g ) =0, (1.0.C)

~ Jz;
i, k=1
defined in some domain D. We shall suppose nothing about the coefficients
of this equation, beyond that they satisfy inequality (1.1), are
measurable, and have their moduli bounded by unity.
We describe as a solution of this equation, a function u(x) € W;
continuous in D, and satisfying the integral identity

n

] ou (7(]) _ -,
g 2_‘ aihmazi dx =0, (7.1
D’ i, k=1

where D' is an arbitrary domain with smooth boundary, contained together
with its boundary in D, and @(x) is an arbitrary function of W; continuous
in D', vanishing on the boundary of D’.

LEMMA 7.1, Let there be situated in the sphere Qp of arbitrary
radius R a domain D, containing O, the centre of the sphere and having
limit points on the boundary of the sphere Sp. Let I' be that part of the
boundary of D, which lies strictly inside the sphere Qp.

There exists a constant M, depending only on the constant o of
inequality (1.1), and on the dimensionality n of space, such that, if
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w, D <&.1‘;_’ (7.2

and equation (1.0.C) is defined in D, then, for any positive solution u(x)
of it, determined in D, continuous in D, and vanishing on I', we have the
inequality

u(U) < ;l) max u (). (7.3)
Nt D

1°. We prove first of all, that, for the validity of this lemma, it is
sufficient to prove it for equation (1.0.C), the coefficients of which a;,
are n times continuously differentiable.

We shall denote such an equation by (1.0.D).

In fact, let the lemma be proved for equation (1.0.D), and let there
be given the equation (1.0.C).

Let equation (1.0.C) satisfy inequality (1.1) for some constant a. Let
the domain D be such that it satisfies the inequality (7.2) with the
constant 2, where M is the constant in inequality (7.2) necessary for the
validity of the lemma for equation (1.0.D) for a/2.

Let u(x) be a solution of equation (1.0.C), which is positive in D,
continuous in D, and vanishing on I

We assign an arbitrary € > 0, and take domains D’ and D",

D’ ¢ D" C D" C D, with twice smooth boundaries, sufficiently near to D, so
that

1) OeD';

2) the value of u at each point of the boundary of D’ differs from
the value of u at the nearest point of the boundary of D by less than g;

3) if R' denotes the upper bound of the distance to the point O from
points belonging to D', then

PnQR_'
M

p D < (7.4)

where Qp' is the sphere of radius R’, with centre at the point O.
We construct a sequence of equations, defined in D”:

m)
Ly = }‘ ai® au =0 (n=1,2, ...,
i 311
i, R=1

such that their coefficients are n-times continuously differentiable, and
satisfy the conditions

n
%N 2 e
3‘ aEE, > 5 DB, el < |

i, k=1 i=

—

and

S(al,‘~a"“’)28x—>0 as m-—» . (7.5
5
This sequence can be constructed, for example, by means of averaging
the coefficients of the original equation.
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We denote by Y the boundary of the domain D".
Let u‘®)(x) be a solution of the equation

L(Tﬂ)u(m) —— U

in D", satisfying the boundary conditions
u™ |y =uly.

The family iu(')}. by the maximum principle, is uniformly bounded,
and by a theorem of Giorgi [3], is equicontinuous in D'; hence there exists
a sequence u('k)(x) (k=1, 2, ...,), converging in D' to some function u".
We prove that u® = u. It is sufficient for this to prove that the sequence
u(®) converges to u in the mean.

This is, however, actually so. In fact, we have

Tt
Y ,
( Nogm e (U — 1"y d = 0
s (}xi E

! th dxk
D* i, k=t
and
T
Q! du 2 (hied
e ——— (U — "N dr = 0.
S ZJ alh Ozk (91,‘1' (LL )jl
D" i, k=1
Whence
H H d a
. ')(M_u(m)) ¢ (,l_”(m)) 3 \ . duht . \
\Y 0 ‘ ___\ AN o gt . ) T
\ - a”" (f.‘L'I- Jry, d.l . P ((l”: @i ) dxy, dx; fu u 'd,'
LGN I e | D7k
i7.0)
and since there exists a constant C, such that
A (ne) y
!{; ” L < C (m=1,2, .. k=1,....n.
Th G
A ou .
and besides, from the condition ‘Iﬁzg» . < oo, on applying to the right-
L~

hand side of (7.6) Schwarz’s inequality, and u§ing (7.5), we find that

“,(w “ — () as Hy —-~ 00

oy, I‘})r,
whence it follows that

[ST10 N

i —u L2 —0  as  m~> oo

—~r

}

Let € be sufficiently small so that u(0) > €. Then, for sufficiently
large m
M (0)> €.

For each such m we take the set of points x € D' at which u(")(x) > E.
We denote by D(®) the component of this set containing the point O. From
the inequality (7.4), it follows that
an HnQR'
“’rb l) < AM

’
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and then, for the function

™ =™ __ e

by our hypothesis that the lemma holds for equation (1.0.D), it follows
that

max u™ (z) > 22™ (0),
xeD’

max u > max u (z) > 2u(0) —¢,
xeD xeD’

and, because € was arbitrary,

maxu (x) > 2u (0),
.\’EB

and our statement is proved.
2°. Thus, we shall prove the lemma for equation (1.0.D). In this
paragraph we carry out a further reduction: we denote by Do the set of

points x € D [1Qp, where Qp is the sphere of radius %J% with centre at
2 2

the point O, at which u > %u(O). Besides the inequality (7.2), let there

be satisfied the further inequality

“’uDO> FZ:;%R ’ (77)

and let the lemma be true under this hypothesis. We prove that it is true
without the hypothesis (7.7), if we take a larger constant: 2"M instead of
M.

Suppose that for the domain D condition is not satisfied. For each
r(0 < r <R), we put

M (ry=maxu (x) = u (z,)
r;lg‘b?'

(considering the origin of coordinates to be the point 0).
We prove that for any r <()<:r§§-§4> , there exists A

(o< A< %) , such that
Mut+nsMme) (143 ). (18)

We introduce the following notation:
Q" is the sphere of radius R/2"** with centre at the point x;

2.

-1
> M(ry;

D} is the component of the intersection BY} [1Q®, which contains the
point x,;

B® is the set of points x € D, where u(x) >

Mmoo [ am iM .
' =u (c)— o (r).
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Since, by our hypothesis, condition (7.2) is satisfied for the domain
D with the constant 27M, then

1
p,D} < Hndr

Suppose, further, that for some m, condition (7.7) is not satisfied
for the domain D} and the sphere QF . Then

M+ 1

0 Dm+1 < Bnlr P'nQ’

Finally, there exists my, such that for the domain DF° and the sphere
Q70 the inequality (7.7) is satisfied. This can be proved as follows. At
the point x, we have grad u # 0. Actually, x, is on the surface of the
sphere Q. of radius r with centre at the point O, and at it, according to
the maximum principle, there is taken the largest value of those, which
are taken in that part of the domain which lies inside Q,, according to the
strict form of the maximum principle u(x,) being strictly larger than the
values taken by u inside Q, . D. But from this it follows that (cf. [10])

at the point x,, g% > 0.

The function u, being a solution of equation (1.0.D), is twice con-
tinuously differentiable (and even a greater number of times, but this is
immaterial at present). Hence the level surface, passing through the
point x,, is in its neighbourhood a twice continuously differentiable
surface. Therefore there exists mg, such that there is a sphere of radius
R/2%0*"  with the point x, on its surface, and which at all remaining
points lies in the domain given by u(x) > M(r). But then this sphere is in
D} for any m, and hence

m RO
pDMe > 2

i.e. for this my inequality (7.7) is satisfied.
From all this it follows that there exists m, such that
my
p D < Ml

and the inequality (7.7) is satisfied for the domain D! and the sphere QF1.
By our hypothesis, the lemma is true in this case. We apply it to the
function u}1, and obtain

M
max u™ (x) > 2uit (x,) ——ml(_ri )
.\‘Eﬁ’,’,'l 2
or
1
W(-T—)mld/)maxu, ( + )m1>

\EDml

It remains to put A = R/2%1%,
But, from inequality (7.8), it follows that

meaz u(x) > 2u (0).
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Actually, let r, be the upper bound of all r < R, such that
M) >u(0) (142 > (7.9)
If ry < !:R, then

M +8)> M () (14 ) > u(0) /\,+~(rl+A> ’

and we arrive at a contradiction tp the hypothesis that r, is the upper

bound of r, for which (7.9) is satisfied. Thus, r, z-%li, and this means

that
M (r)) 2 2u (0,

and our assertion is proved.

3% We pass on to the proof proper of lemma 7.1. In accordance with
1° and 2° we shall prove it for equation (1.0.D), under the additional
condition (7.7).

Since equation (1.0.D) is homogeneous, and the magnitude of the
derivatives of the coefficients does not interest us, we can make a
similarity transformation, and instead of the sphere Qg of arbitrary
radius consider a sphere of any fixed radius. It is convenient for us to
consider the sphere of radius 2. We denote it by Q,, and denote the con-
centric sphere of radius 1 by Q;.

Let inequality (7.2) be satisfied for some M. Let a solution of
equation (1.0.D) be determined in D, which is positive in D, continuous in
D, and which vanishes on I, and let inequality (7.7) be satisfied. We show
that for sufficiently large M (depending on a and n) (7.3) is correct.

¥We now make use of the property of u(x), as a solution of equation
(1.0.D), being n + 2 times differentiable (it is essential for us that it
be n times differentiable). By a theorem of the paper of Kronrod and Landis
[11]), an n-times differentiable function of n variables has the property
that the set of points of the domain of definition, where the gradient of
this function vanishes, is mapped on the number-axis in a set of measure
Zero.

We put D, = D r\Ql. Further, for every t (0 < t < u(0)), we denote by
B, the set of points x € D, at which u(x) > t, and put G¢ = B¢ (1 Q,. We
denote by Y., that part of the boundary of the set G;, which lies strictly
inside Q,. Consider the integral

gl 1
/(1)23%,

Yi on
where n is the inward normal to G;. By the quoted theorem of Kronrod-
Landis, for nearly all t (0 < t < u(0)), Y¢ is a smooth (n - 1)-dimensional
manifold %E > 0, and thus for nearly all t, this integral has a meaning,

and is positive (or equals w).
u())

Let us now consider S I (t)dt.
Y
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This integral does not exceed the volume of the domain D,, and hence, by
inequality (7.2),

(L}

/ (t) dt<“nl)l < .llul,) < 7&.‘\'7()!‘ = '(:’)#

(= )

(W, is here the volume of the n-dimensional unit sphere).
Whence it follows that there exists to such that

20n
[ () < W (05 s
i.e
¢ do . 20,
S B S Mu )

Vio On

One can here select to, so that the set of the level u(x) = to does not
contain points at which grad u(x) = 0.
Applying Schwarz’ s inequality, we find then

o Mu (0 . _
a%‘d"> ZL:D(H)(H,L_W:O)'- (7.10)

Y[O

We now use the property that, for a domain lying inside an n-dimen-
sional sphere with volume less than the volume of the sphere divided by
2%, it is correct that the part of its boundary lying strictly inside the
sphere has (n — 1)-dimensional measure not less than 1/2" times the entire
measure of the boundary of the domain.

If we suppose that

M > 2",

and denote by I';, the whole boundary of G;,, then, by what has been said
o o

1
Pn_1Yie > on p’n—lrfov

and, by the isoperimetric inequality,

n—|

1
p’u—lyto>—2_77(p’nG'0) "
Since, by inequality (7.7)

@
l“’nG[O > ﬁ ’

then
n-—1
® n
MI\ALY’0> . n—1 "’
PRUSEY.Y B
and we get from (7.10) -
. u (V" -
\ S - (7.11)
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We denote by 6, that part of the boundary of B:,, which lies strictly
inside Q. Then
Y'océfo

We denote by C:, the part of By, situated in the spherical layer Q2 \0;.
Let X be some piecewise smooth surface, separating in Ct, the sphere

| xl = 1 from the sphere |x |= 2 (any continuous curve having limit points
on both spheres certainly intersects X).

Thus, X together with part of 5to bounds some subdomain of the domain
Bg,, containing Gt,- We denote it by G. The boundary y of this domain in-
cludes in itself all Yto» 8nd besides, contains points belonging to 5to
and . Let Y' = (Y(168¢) \Yto, and Y = y[1Z.

We consider the equation

N 9 ﬂ) -
§ ~ B <"ik oy, ) 4=

and applying Green’'s formula to the left-hand side, we obtain

du Ju . ou ou _
S_a‘;‘do-_—"g Wdﬁ**[deG—}—Sde—O,
v Vi, ¥’ '
where ) is the derivative along the normal (ji-- g aip Yi —Q— ;
-y g ;- ;i ik Yi dxp Y:

being the direction cosines of the normal).

Since
ou - Ju
g 7ﬂ7d04wa g o do
Yty Vi
and gv—u > 0, then
yl
du du L C ] O
ugﬁdo‘:\‘g_&‘;‘dc.i\\\gl;‘\‘— d(T
Y, ' >
and, applying inequality (7.11), we find
-2
cl au (0) o, -
\ | 5o |do>- L (7.12)
X sen-spf 7

Our lemma will be proved, if we are able to show that the surface X
can be always selected so that

o
J av
where C is a constant depending on ¢ and on the dimensionality of space.
This is a consequence of a general theorem of analysis (in a certain sense
analogous to the theorem of Lagrange about the derivative at a point of an
interval for a function of one variable).

This theorem will be proved in the next section, and thus the proof of
lemma 7.1 will be completed.

do < & ose u (i),
M xeh
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§8. A theorem of analysis

The theorem of this section was proved by M.L. Gerver and myself [12].

THEOREM 8.1. Let a domain D, u,D < 2" w,/M, be situated in the
spherical layer S= {1 < |x|< 2}. Let the domain D have limit points on
both spheres |x|= 1 and |x|{= 2, and let that part of its boundary, which
is stituated strictly inside D, be a smooth surface.

n
Let there be defined the quadratic form kE . aik(x) &; Ep in the
i, k=
domain D, satisfying the inequalities
Y an () i >e DE, a>0, Ja,l<l, (8.1)
i k= t=1

the coefficients of this quadratic form being continuously differentiable
functions in D. _
Further, let there be defined in D a function f(x), twice continuously
differentiable, and satisfying the condition
osc f(z) < 1. (8.2)
.\'E—I—)
Then, there exists a piecewise smooth surface %, separating in D the
sphere ‘x|= 1 from lx|= 2, such that

.\ ‘ 2 a,y; a—‘%'dﬁ P —61- , (8.3
T ia=t

where C is a constant depending on the constant 0 of inequality (8.1) and

on the dimensionality n of space (Y; being the direction cosines of the
normal to the surface).

For the proof of the theorem we require the lemma: _

LEMMA 8.1. We denote by §Q the set of points x € D, where grad f = 0.
Then, this set can be included in a finite number of spheres Qi, ..., Qy
such that, if S, denotes the surface of the m-th sphere

AY

S (igradfido< 1.

ne==| N

PROOF. We divide the set §} into two parts: we attribute to the set
Q' those points of §, in which the second differential d?f is not zero,
and to the set 0" those points of  where d?f = 0. The set Q' has
measure zero, since all points at which it is dense belong to .

We take some € > 0, and include Q' in an open set G, of measure less
than €.

We cover each point x € Q' by a sphere K, with centre at this point
and contained in G, and let S; be the surface of the sphere Q; concentric
with K; with diameter five times as large. We evaluate

S fgrad f| do.

’

Sy

Since f is twice continuously differentiable in l_), then all its
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second derivatives have bounded moduli. Let L be a constant bounding them.
Since at the point x we have grad f = 0, then “gra.d f ”S,’, < Lry, where
ry is the radius of S;. Whence

{ lavad £ do < Lty Si= 5"l K, 5.4
St
We select from the aggregate of spheres {K;} a countable set
Ki, .... K,", ..., such that these spheres are mutually disjoint, and the
(open) spheres concentric with them with five times the radius
Q], ey Ql’)lv P

cover all the set §’, This can be done by applying the process of Banach:
we take from {K,} a sphere whose diameter exceeds half the upper bound of
the diameters. We denote it Ki. We reject all the spheres intersecting it.
From the remaining spheres we take a sphere whose diameter is greater than
half the upper bound of the remaining spheres. We denote it by K;. etc.

By reason of (8.4) we get

[ee)

3 { lgradfido < 5" nLe. 8.5)

m=1{ S;n

We denote here by S, the surface of the sphere Q.

Let now x € Q. Since at this point both first and second differentials
vanish, then there exists a sphere Q; with centre at the point x, such that
everywhere on its surface

[grad f | < er,,

where r, is the radius of this sphere. In this connection one can select
the sphere so that r, < 1. Denoting by K; the sphere concentric with, and
radius one fifth that of, Q;. Then

K |grad f|do < er p, Sy = 5"nep, K. (8.6)
5%
Just as before, we select from the aggregate { Ky} of spheres a countable

number
vt
K: ..., Kn, ...

of mutually disjoint spheres such that the concentric spheres with five
times the radius

Q. ..., Ons ..

cover all Q".
In view of (8.6), and considering that K, does not go outside the

limit of the sphere |x|g 2 + %, we get
2 S | grad f| do < 5"nemn<2 +-é>n= 1 no,e; (8.7

m={ S;’n

Sa 1s here the surface of the sphere Q,, ®, is the volume of the unit
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n-dimensional sphere. Combining the spheres {Qn} and {Qj} we get an
aggregate of open spheres, covering the closed set Q= Q,|J Q,. We select
from them a finite number. Let these spheres be Q,, ..., Qy, and their
surfaces be Sy, ..., Sy respectively.

If we select € = 1/(5"%nL + 11" nw,), then, from inequalities (8.5) and
(8.7), we get

g |grad f|do < 1,

llb/z

O'J

which it was required to prove.

We now proceed to the proof of the theorem.

First of all we find, corresponding to the lemma, spheres Q,, ..., Qy,
and exclude them from the domain D. We put

D* = E\mz;;i Qm'

We form the intersection of D* with the closed spherical layer
< |xl g 11 . We denote this intersection by D’.

D' is a closed set, and everywhere in D’, grad f = 0. Hence,
| grad f | > B, B> 0.

We continue f(x) from the set D' to some neighbourhood of it in an
arbitrary twice continuously differentiable manner.

We continue also all coefficients a;j of the quadratic form to some
neighbourhood of the set D' in an arbitrary continuously diffentiable
manner. We take now the B-neiggbourhood D§ of the set D' with & (< 1/8)
sufficiently small so that in Dg the continuation of f is defined (we denote
it by the same letter f); f satisfies in Dj the condition (8.2), and
| grad f | > B 1in Dj, besides, b is sufficiently small so that in Dj the
continuation of the coefficients of the quadratic form is determined (we
denote them also by a;p), and satisfy inequality (8.1) there, and finally,
BaDg < 2" @ k/y.

In Dy we consider the system of ordinary differential equations:

Ay~ a .
——;7-.: 3 aik&%{ (i+1, ..., n). (8.8)

k=1

We consider the scalar product of the vector of the right-hand side
with grad f. We have

n n
, .
(2 aih%, gradf)-: D) e ﬁcf oifk>a] grad f{2.
k=1 i, k=1
From this inequality follows, firstly, that in the domain Dg there are
no stationary points of the system (8.8) (since grad f # 0 in it), and
secondly, that the direction of the field forms with the direction of the
gradient at the given point an angle not a right angle, the modulus of
the cosine of this angle being larger than a constant, depending on @:
Let I(x) be the direction of the field at the point x; then
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lcos (1(z), grad f)| > C (a) > 0. (8.9)
of

If 3l denotes the derivative in the direction of the field, then,
remembering that | grad f |> B in Dg, we get from (8.9)

l%ﬁ] > C(a)|grad f| > C (a) B. (8.10)

It hence follows that in Dg there are no closed trajectories of the
system (8.8), and all trajectories have uniformly length, and are
described in uniformly bounded time. Let L be a constant, bounding the
length of the trajectories, and T a constant, bounding the time of motion
on a trajectory.

Let the surface S be tangent to the direction of the field at each
point of it. Then

l 2 aikYi%ldG:"O’
5 i, k=1 "

since the integrand is identically zero (here, as before, Y; are the
direction cosines of the normal to S).

We use these in the construction of the surface X, which we require.
The ruled surfaces, whose generators are trajectories of the system (8.8),
form the basis of £. In the integral of interest to us, they contribute
nothing. These surfaces will have the form of walls of thin pipes, which
overlap and cover all D’. Then, in some pipes we insert partitions. On
these partitions our integral will not be equal to zero, but we shall be
able to make it not very large. We now begin the construction of the pipes.

We shall find a number 1 (0 < n.<-%6), satisfying the following

conditions: for any pair of points x,, x5 € Dé. for which | x; - x5, |< n:
1) there is satisfied the inequality

igradj(x,)——gradf(xz)[<~g— ; (8.11)

2) the angle between the directions of the field at x, and x, is less
1
—-7;
than i

2) let y, and y, be points, at which we find ourselves moving on the
trajectories from the points x; and x, respectively at the same time t < T.

Then ,yl-y2|-<%6'

Let the number n, besides, be so small that the following condition
holds:

4) let x, and x, be two arbitrary points on one trajectory of the
system (8.8). Through each of these points draw an (n - 1)-dimensional
hyperplane orthogonal to the trajectory. Then, if one takes in each of
these hyperplanes a (n - 1)-dimensional sphere, with centre at x, and x,
respectively, and radius equal to 1, these spheres do not intersect.
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Condition 1) can be satisfied because of the uniform continuity of grad
grad f in Dg. Condition 2) can be satisfied by the uniform continuity of
the field. The possibility of satisfying 3) follows from the uniformly
continuous dependence of the solutions of the system (8.8) on the initial
conditions. Finally, condition 4) c