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1. Introduction 

Let M" be a compact  connected manifold, with C ~ Riemannian metric. The 
Laplacian A of  M is a negative definite, setf-adjoint, elliptic operator.  Suppose that 
Fis a real eigenfunction of  A with eigenvalue 2, A F = - 2F. The nodal set N of F is 
defined to be the set of  points x ~ M where F(x)= 0. 

The unique continuation theorem [1] states that  F never vanishes to infinite 
order. This places strong restrictions on the zeroes of  F. By developing the 
machinery of  Aronszajn [1], we establish a number  of  quantitative results 
concerning the nodal set. These theorems seem most  interesting for large 2. 

One of our main conclusions is 

Theorem 1.1, The eigenfunction F vanishes at most to order c[//2, for any point 
in M. 

When M is two dimensional, it follows from the work of  Cheng [5], that F 
vanishes at most to order c2. Using spherical harmonics on S", one obtains 

sequences of  eigenfunctions which vanish to order ~/2. Theorem 1.1 is a 
consequence of  more explicit estimates for the growth of F near its zero set. The 
constants appearing in these estimates depend only upon the curvature and 
diameter of  M. 

Now suppose the M is. a real analytic manifold with real analytic metric. The 
theory of analytic sets implies that N has finite n - 1 dimensional Hausdorf f  
measure, denoted ~ f  " -  1 (N). We establish upper and lower bounds: 

Theorem 1.2. c x ]//A ~ ~ n - 1  (N) ~_ C2 l//~. 
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Br/ining [3] proved the lower bound for C oO metrics on surfaces, n = 2. Yau has 
conjectured that Theorem 1.2 holds for Coo metrics in any dimension. This seems 
to be a difficult problem. A related concern is to optimize the geometric 
dependence of the constants cl and c 2. Eigenfunctions of form 
sin (kl xl)  sin (k2 x2) ... sin (k,x,) on the torus T" = S 1 x S ~ x ... x S ~ show that 

is the correct order of magnitude for o~f "-~(N). 
We plan to treat manifolds with boundary in a subsequent paper. 
It may be helpful to provide some motivation for the arguments presented in 

this work. The remainder of the introduction serves only to orient the reader. 
Logically, one may omit this discussion and proceed directly to the main body of 
the text. 

Consider the functions Fk(Z)= Re (z k) defined in R 2. Each Fk is harmonic, 
AF k = 0, but Fk can vanish to arbitrarily high order at the origin. One sees that 
Theorem 1.1 will not be established by purely local arguments. However, as this 
example suggests, there are local constraints which relate the growth of 
eigenfunctions on large balls to their order of vanishing on small balls. 

Suppose F is an eigenfunction of A, A F = - 2 F ,  defined on some geodesic ball 
B (p, ho) in a Riemannian manifold. Let h < ho be sufficiently small. Assume 2 > 0, 

fl>a,~+a2 and fl>a31og(maxlF, / max tFI) (1.3) 
\ r<h /hllONr<=h/5 

where r is the distance from p. 
In Section 3, we will prove that (1.3) yields 

m a x l F l > ( C l s 6 )  o~ max IFI (1,4) 
r<6 h/lO<r<h/5 

Thus, if F vanishes to high order at the center of B (p, ho) then either 2 is large or 
E FI grows rapidly on concentric balls of scale h. Related arguments give control on 
the ratios of the size of lFI on three commensurable balls centered atp.  I f  r F[ < 1 
in r =< h and max I FI >= exp (-- D t 5 ~/~ - C1~) then one has 

r<=h/5 

max IFI _-__ e x p ( - D e 6 ~ / 2 -  C~5) (1.5) 
r <-_ hllO 

Given (1.4) and (1.5), which are strictly local results, Theorem 1.1 follows by 
an elementary global argument, using the compactness of M. One multiplies Fby a 
constant to achieve I FI < 1 and F(xo) = 1, for some Xo E M. Recall that M is 
connected. If  x e M is arbitrary, we join Xo to x by an overlapping chain of balls, 
with radius h/5, whose centers are separated by a distance at most h/lO. Using (1.5) 
inductively, and the analogous statements for h replaced by a fraction of h, we see 
that, for any x e M, 

max Irl>exp(-C4~/2-Cs) 
a(x.h/200) 

We may now use (1.4) to deduce the conclusion of  Theorem 1.1. The point is that 

the hypothesis (1.3) has been established f o r / / >  a41/~ + as. 
It remains to comment on the proof of the local result (1.4). This rests upon a 

Carleman inequality, as does Aronszajn's proof  [1] of unique continuation. 
Suppose u is a smooth function having compact support in 6/2 < r < h. If 
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fl > al ]f2 + a2, then the basic Carleman estimate is 

fI?2(2-P)[(A+2)ul2r-ldrdt>=B9fl2~ ~fz-2au2r-ldrdt  (1.6) 

Here ?is a carefully chosen weight function, comparable to the geodesic distance r 
fromp, in B (p, ho). Section 2 is devoted to the proof  of  a stronger version of(1.6). 
One works in geodesic polar coordinates and does repeated partial integrations in 
the radial and spherical variables. This is similar to the approach of  Aronszajn [1]. 
However, we must give special attention to the dependence upon the parameter 2. 
To apply (1.6), let 0 be a suitable cut off function supported in an annulus. I f F i s  
our eigenfunction, we may substitute u = OF in (1.6). Applying standard elliptic 
theory to bound L | norms by L z norms, one deduces 

D l f l 3 ( ~  -2l~ max I F I 2 +  (D2 2 -1- D3) 

max I FI 2 > (D4 2 + D5)-"/2 (1.7) 
h/4 <_ e< 3h/4 

• 2  m a x  I f12 
hi12 <= ?< hi4 

The hypothesis (1.3) permits the absorption of the second term on the left hand 
side of (1.7) into the right side of  (1.7). Elementary arguments now give (1.4). 

We proceed to motivate the proof  of  Theorem 1.2, valid for real analytic 
metrics. A main theme of this paper is that a solution of  AF= - 2 F ,  on a real 
analytic manifold, behaves like a polynomial of degree c a If2. In fact, we will prove 
that Fcontinues analytically, from a small coordinate patch I xl < 1 in R", to the 
complex ball I zl < 1 in C", and satisfies the growth condition 

max IF(z)l < e C , ~  max [F(x)l (1.8) 
Iz[ < 1 Ix! < I/5 

Note that (1.8) holds for polynomials of  degree c31//2. Conversely, motivated by 
Nevanlinna theory, we expect that (1.8) forces strong restrictions on the zero set of  
F. For purposes of  studying the nodal set, one anticipates that F will share many 
common properties with polynomials. 

Before discussing the nodal set in more detail, we first sketch the proof  of (1.8). 
We may assume that our Riemannian metric continues analytically into the 
Complex ball t zl < 2. The Laplacian is elliptic with analytic coefficients, so we 
know that F continues analytically to some neighborhood of  the origin. By 
carefully examining the proof  of  analyticity [8], we see that Fcontinues to l zl < 1. 
Moreover, one obtains the estimate 

max IF(z) l < e C ~ m a x  I f (x) l  (1.9) 
I z l < l  Ixb<2 

Note that (1.9) is the natural estimate for solutions of  AF= -2F,  as one guesses 
from the simple one dimensional example F(x)=cos(~/-2x). In itself, the 
inequality (1.9) does not place strong restrictions on the growth of  t F(z)l. 
HOwever, by invoking Theorem 1.1 and its proof, we obtain 

max LF(x)l <e ~6t/'2 max IF(x)l (1.10) 
Ixl < 2  Ixl < 1/5 

Combining the estimates (i .9) and (1.10), yields the powerful inequality (1.8). 
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Let us indicate the idea for obtaining the upper bound, Jg  "- 1 (N) < c2 ]/~, of 

Theorem 1.2. First suppose that P(x) is a non-zero polynomial of degree e31/~., 
defined for x ~ R". Let V = {I x] < 1 1P (x) = 0). I f  L~ denotes the set of lines in R" 
that intersect Ix I<  1, then integral geometry gives 

~ " - ' ( V )  <= ~ ILr~ VErily(L) 
s  

Here L ~ Ar and dp is a measure on A a. Moreover, I L n VI denotes the cardinality 

of  L c~ V. Clearly, I L c~ VI < c3 ]//2 almost everywhere. So ~'~ "- ~ (V) is bounded 
by a multiple of]/~.  Our eigenfunction F(x) need not be a polynomial, but it does 
extend to an analytic function satisfying (1.8). We shall show that integral 
geometry methods carry over to prove the required upper bound 
9f~ , -  1 (N) < c 2 [//2. Of course, the proof is considerably more difficult. Full details 
appear in Section 6. 

Finally, we turn our attention to the lower bound J4(~"-I ( N ) >  c~ ]/~. A 
maximum principle argument [3], [6] shows that every ball of radius d~/]/2~ 
contains a zero of F. Consequently, we obtain a family of pairwise disjoint balls 
B~ = B(x~, dz/V2 ), covering a fixed portion of the volume of M, with r vanishing 
at the centers x~. The number of  B~ is at least of magnitude d3 2 "/2. Using (1.8), we 
shall prove that ~ "- 1 (B~ c~ N) > d5 2 - t"-  ~)/2, the natural expectation from 
scaling considerations, for at least half of the bails B~. The desired estimate 

"- t (N) > el ]/~ follows immediately. 
It remains to explicate the lower bounds ovf "- ~ (B~ c~ N) > d~ 2-~"- t)/2, for 

half of the B~. We begin with the model problem of a harmonic function Fon  a ball 
B ~ R", where Fvanishes at the center of  B. The mean value property of  harmonic 
functions implies that F integrates to zero over B. Consequently, 

S I F [ =  S I F I = � 8 9  ~IFI 
B+ B_ B 

where B+ denotes the set of points where Fis positive and B_ = B - B+. There are 
three possibilities 

(i) Vol B+ is commensurable to Vol B_ 
(ii) Vol B+ ~ Vol B_, but F is strongly peaked on B+ 

(iii) Vol B_ <~ Vol B+, but F is strongly peaked on B_ 
In case (i), we can apply the isoperimetric inequality [7], 

, -  t (B ~ N) ~ d6 min (Vol B+, Vol B_ )" - 1/,, to obtain the desired lower bound 
.g~ , -  t (B c~ N) > dr (Vol B)"- lr,. Unfortunately, cases (ii) and (iii) may sol, e- 
times occur. Examples can be constructed using Runge's approximation theorem. 
However, suppose one has the additional growth condition 

F 2 __< cv ~ F 2 (1.11) 
Q B 

where Q is a cube containing the double of B. We show that (1.11) excludes the 
cases (ii) and (iii). By standard elliptic theory the L ~ norm o f F o n  B is bounded by 
the L 2 norm o f F o n  Q. If  (1.11) holds, then the L ~ norm o f F o n  B is actually 
bounded by the L 2 norm o f F o n  Bitself. This allows one to bound the L 2 norm of 
F o n  B by using the L 1 norm ofF.  Let E c B be any measurable set. The CauchY" 
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Schwartz inequality now gives 

S IF[ //Vol E']�89 
~ i ~ - ~  _- < c8 \ v - - 0 ~ J  
B 

Taking E = B+ or E = B_ shows that (1.1 1) does indeed force case (i). 
Although we have been discussing harmonic functions on R", similar 

arguments can be applied to solutions of zJF= - 2 F  on By = B(x~, d2/]//22). The 
point is that By is sufficiently small, relative to the operator A + 2. Thus one has 
~ n -  1 (B~ c~ N) > d 5 2 -(n- 1)/2 provided 

Irl 2 <  C 9 ~ IF] 2 (1.12) 
Q~ By 

Here Q~ is a cube, defined in a suitable coordinate system, containing the double 
of B~. 

TO establish (1.12) for at least half the B~, we need the substantial Proposition 
5.11, concerning analytic functions G which satisfy a growth estimate like (1.8). 
One assumes that G(x) is real and non-negative for real x, lying in a standard cube 
Q, centered at the origin. The conclusion of Proposition 5.11 is that, for 
x~Q~-S, 

log G (x) - log AVQv G (x) ] < d 8 

where the set S c Q has measure less than e. Applying this with G = F 2 easily gives 
(1.12) for at least half of the Q~. The proof of Proposition 5.11 again involves 
reduction to the case where G is a polynomial. One proceeds by induction on the 
dimension n. Curiously, the one dimensional case seems deeper than the induction 
step. The weak type (1,1) inequality for the Hilbert transform, a basic result of 
Fourier analysis, lies at the heart of our argument. 

This completes our guide to the proofs of Theorems 1.1 and 1.2. We now turn 
to the complete proofs, with all the technical details. 

2. Quantitative Aronszajn inequalities 

The basic tool for proving unique continuation [1] is an integral inequality of 
Carleman type. Our purpose here is to provide a similar estimate with better 
dependence upon the parameter 2 > 0 and the geometry of M. This result is 
fundamental for our later investigations. 

Let M" be a C ~ Riemannian manifold. Suppose p~  M and the exponential 
map exp: T p M - . M  is a diffeomorphism up to distance h0 from p. Then 
one has geodesic coordinates on the ball B(p, ho). Choose a coordinate system 
t l '  t2 . . . .  ' tn- 1 on the standard unit sphere. In geodesic polar coordinates, we may 
write the metric and volume element as 

dS 2 = d r2 + r 2 7~jdti dtj 

dvol = r"- i V~  drdt 

Here ~ = det (?~i)" In Euclidean space, the ?ij are independent of r. 
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We now introduce a local conformal change in the metric and volume element. 
The new volume element may be different from the volume element naturally 
associated to the new metric. Let v be a positive constant. One may define the 
metric g~j = exp ( - 2  v r2)g~j. The geodesic lines starting from p coincide for the 
two metrics and one has 

f =  i e-v~ ds 
o 

In particular f =  r + 0(r 3) near the origin. The modified volume element is 
obtained by multiplying the volume element of ~ by ~' (~) = exp (2/3 v ( n -  2)f2). 

Consider geodesic polar coordinates for the metric ~. One has 

dg2 = dr2 + ~2 ~ij dt~ dtj 

dvol = ?"- 11/~ q/(f) dfdt 

The inverse matrix of ~7~j will be denoted by ~7'J. Also we may define 
to = 0/0 ~log (~u V~). The metric and volume element were changed to achieve: 

Lemma 2.1. I f  h < h o is sufficiently small and v is suitably large, then on B(p, h), 
0~7~J (i) ~ > (re -  ~o) ~J 

(ii) ~o < - yr. 

Proof. Aronszajn [1, p. 241] calculated 

a~,7 ~j 0~ ~ 8 
OF = Or + 3 vr~iJ +O(r2) 

which implies 
0 4 

o 9 = ~  l o g ] / ~ -  ~ vf+O(r 2) 

The lemma follows from the theory of Jacobi fields, [2, pp. 250-257]. 
The primary step is to establish a Carleman estimate for the operator A + ~. 

Here J is the Laplacian of~ and ] = 2 exp (2 v r2). Let u ~ C~ (B (p, h)) and suppose 
that u vanishes on a neighborhood of the originp. Suppose ~ is a positive constant. 
We want to derive a lower bound for the integral 

I =  $5 f-2= I(A + ~)ul 2 F"-IV~ ~udedt (2.2) 

In geodesic polar coordinates, the Laplacian may be written as 

02u / n -  l ~ Ou l - -fff ~ ~ -ffi-, ) ~ u =  Or_~+ ~ +01 0 0u 

We substitute this expression in I and make a change of variable, f =  e -e. Define 

n e-aaw. One has, with w' Ow/OQ, f l = a - ~ + 2  and u =  = 

I= ~ S l w"--(n--2 + 2fl--O)w' +fl( f l+n--2--O)w+ AQw+ ~e-EQwl 2 V~udedt 

In the above integrand, 0 = 0/0e (log V~)and A, w = ~ ~ /  ~7o . 
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For later reference, we change variables from r to 0 in Lemma 2.1. Define 
= 0/00 log (~u ]/~) and Z = - log h. We may write 

Lemma 2.3. I f  Q > Z, then 
(i) -(~ij),>= (re-2o + lt);ij 

(ii) /~=> ve -2Q. 

Removing the 0 terms from I gives 

I o = ~  Iw" - - (n - -  2 + 2fl)w' + fl(fl + n -  2)w + dow + ~e-  2Qw]2 V~  ~u dtdq 

Clearly, by the triangle inequality, 

I>=�89  , 

with 

O21w'-awl2 VT atd  
We proceed to derive a lower bound for I o . The term I~ will be absorbed later. 

If f is any function, then elementary algebra gives 

with 

I2 = S S [(w" + fl(fl + n - 2) w + Ao w + 7~e- Z~ w) 2 

+ ( 2 f l + n - 2 )  2 f 2 w  z + 2(fl(fl + n _ 2) w + 2e -  2O w) 

�9 n - 2 ) / w ]   ,l/ dtdQ 

13 = (2fl + n - 2) 2 S S (w' + f w )  2 9, ]/@ dtdQ 

14= - 2 ( 2 f l + n -  2)I  ~ w ' [ w " + f l ( f l + n - Z ) w  

+ Aow + ~e-2~ + (2f l+ n - 2)fw] ~tl /~dtdo 

I s = - 2 ( 2 f l  + n - 2) I~fw[fl(]3+ n - 2)w + ~e-2~  

+ (2fl+ n -- 2)fw] gt v ~ a t d o .  

Suppose that fl > al V ~ for a sufficiently large constant a l .  We choose 

f = ~  log 1 - t f l ( f l + n _ 2 )  e -2~ +~ /~  

By Lemma 2.3, we have f >  0. The positivity of  f insures that I z ~ 0. 
Integration by parts in 0 gives 

I , + I 5  = & + J5 
with 

J4 = --2(2/? + n - 2) I I  w'[w" + AQ w + (2fl + n - 2) fw]  Vl/~dtdQ 

2 2W2 Js = - - 2 ( 2 f l + n - 2 )  I I f  gtVr~dtdQ 
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Partial integration in t gives 

J 4 = - 2 ( 2 f l + n - 2 ) I I  w' w" -y"  t3ti at-~ +(2f l+n-2) fww'  r176 

For this calculation, it is crucial that ~, is a function only of Q, independent of t. 

We now integrate by parts in 0 to yield 

Ow aw 
J4 = (2fl + n - 2) SJ" #(w' )  2 + ( - ( f ' J ) '  - #Y'J) at, atj 

+ (2fl + n - 2) ( f '  + f# )  w2 ] g/ ] /~ at a 0 

Using Lemma 2.3 (i), one finds that 

-/4 > (2fl+ n - 2) SS [# (w') 2 + (2fl+n - 2 ) ( f '  +fp)w z] g/V~dtdo 
Moreover, the definitions o f f  and # imply, for fl > az, 

J4 ~ - -Cl f l  2 I I  e-2Q [(w')2 Jr- W 2] ~V~dtdQ 

Similarly 

:5>_ fl e-2Ow2N~/-~dtdo 
and 

I3>f l  2 I I  (w')2~']//~dtdQ-C3# 2 It  e-2Qw2~vV~dtdo 

Combining these estimates, we may write 

io >[72 I I (w') 2 ~V~dtdQ-C4f l  2 I I e-aO[(w') 2 + w2]~ul//-~dtdo 

If Z is sufficiently large, then since 0 > Z, 

Io>=Bl# 2 II (w')2~'~/~dtao-c4fl 2 II e-ZQw2~vV~dtao 
Integration by parts and the Schwartz inequality force 

I I e- 2O w21/l V~ dt do <= C6 e- 2Z I I (w')2 ~ V~ dt d O (2.4) 

So, for large Z, we have 

Io >= Bz# z I f  (w') 2 r 

The definition of 0 implies 

6 ~ C7# 2 I I  [(W')2 -I- W 21 e -2~ gtl/~dtaQ 

Using (2.4) again, we absorb 11 in part of I0 to deduce 

z >_ B3 fl a I 5 (w') 2 ~' l/~ dt dQ (2.5) 
Suppose that the support of w is contained in ? > 6. Integrating by parts and 

applying the Schwartz inequality gives 

6 II e~ II  (w')2~]/~dtdo (2.6) 
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From (2.4), (2.5), and (2.6) one finds that 

I>=B4flz ~ e - Z ~  Bs6f l  2 S~ eQw2~uV~dtdQ 

We now change variables from e and w back to l a n d  u. Our results thus far are 
summarized in 

Proposition 2.7. Suppose that u has support in 6 < f < h, where h < h o is sufficiently 
small. Assume that ~ > a~ ~/2 § a 2 with suitably large constants a~, a2. Then the 
integral I given in (2.2) satisfies 

I>=a4fl 2 II f-2"-2u2qJ]//-~ f " - l d t a y §  B, dfl a II  f-2a-5U2~ff]//~ ~n-ldtaf" 

Thus far we have dealt solely with the Laplacian A. Of course, our basic 
interest concerns the Laplacian A of the original metric. Recall that ~ = q~g with 
conformal factor q~ = exp ( -2vr2) .  A calculation in geodesic polar coordinates 
gives 

au (2.8) Au = 4) - l Au - (2n - 4) ~b - 1 vr ~-7 

Define 

K= II e-2~ I(~ + a)ul2e ~ ~ , ,  deat 

Using (2.8) and the triangle inequality, we have, for h sufficiently small, 

K>- B 6 I -  B 7 SI e-z~t '-Ou~Z y , - i  V~ d?at 

However 

II  e - ~ / - ~ u V  ~ "-1 w' ~ r - ~ )  V ~ v d f d t = f f  I - f l w l 2 e - 4 e d o d t  

Using (2.4) and (2.5) as was done above gives 

K > Bs I (2.9) 

for )r sufficiently large. 
n 

Recall the definition of  fl = e - ~  + 2. Using Proposition 2.7 and (2.9) we 

deduce the main result of  this section: 

Proposition 2.10. Suppose that u has support in 6/2 < r < h, where h < h o is suitably 

small. Assume that fl > a I V ~  + a 2 with sufficiently large constants a 1 and a 2 . Then 

~,j- ~2~-~ I(A + ~ ) u l  ~ r - ~ a r a t  

>-B9fl 2 IS r 2 - 2 a u 2 r - l  drdt + Cgdfl 2 S S r - l - 2 ~ u 2 r - l  drdt" 

Let C, o be an upper bound for the absolute values of the sectional curvatures ~ B(p, ho)" The theory of  Jacobi fields implies that the constants appearing in 
roposition 2.10 depend only upon C~o and ho [2, pp. 250-257]. Recall that 

Jacobi's equation is a second order homogeneous linear differential equation with 
coefficients depending upon the curvature tensor. The solution space consists of 
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Jacobi fields, which arise as the transverse vector fields to one parameter families 
of  geodesics. In geodesic polar coordinates, the coefficients 7~ of  the metric tensor 
are given by the inner product of suitable Jacobi fields, defined along radial 
geodesics starting at the origin. Elementary calculations and standard comparison 
theorems allow one to estimate the ?~ij, the first two radial derivatives of the ?0, 
other related quantities such as y~s and 7, and their analogous derivatives, in terms 
of Clo and ho. At each step of  our derivation of Proposition 2.10, only such 
information about the metric was demanded. This involved some modification of 
Aronszajn's original approach [1]. In particular, the weight function ~u was 
introduced to achieve good geometric dependence. 

3. Local properties of eigenfunctions 

We continue in the framework of our previous section. Let F be an eigenfunction 
defined on B (p, h0). That is, A F =  - 2 F ,  for some 2 > 0. The idea is to substitute 
u = OF into Proposition 2.10, where 0 is an appropriate cut-off function. This 
gives interesting relations between the order of vanishing of F at p and the rate of 
growth of F on a neighborhood ofp.  

Suppose that h < ho is sufficiently small. Recall the estimate t" = r + 0 (r 3) near 
the origin p. Therefore, we may construct a smooth function O(r) satisfying the 
following conditions: 

i) 0 = 0  

ii) IVOI < C~fl6 - t  

IAOI <-_ C2fl2 6 -2 

iii) 0 = 1 

iv) I VO I < C3 

IAOI < C ,  

v) O=O 

< ? < h/2 

h/2 < ~< ]h 

Of course, the constants appearing in iv) depend upon h. However, we want to 
emphasize the dependence on the parameters fl and 3. 

Define u = OF. Since Fis  an eigenfunction with eigenvalue - 2, a computation 
gives Au + 2u = F A 0 + 2 V O . V F. Standard elliptic theory bounds l V FI on a ball 
using max t F[ on a larger ball. It is easy to deduce: 

i,  u+ u-o 

ii) l A u + ~ u l < - C s f l 2 ~  -2 max IFI (1 - ,.1-~') ~ < ~:< fi 
(i -~)~_~ e~ 0 +~)~ \ xup /  

iii) A u + 2 u = 0  ~ <  ~<h /2  

iv) [Au+2uI<=(C62�89 max [FI h / 2 < ~ < 2 h / 3  
h/4<~_3h/4 

v) A u + 2 u = O  ~> 2/3h 



Nodal sets of eigenfunctions on Riemannian manifolds 171 

The eigenvalue 2 does not appear explicitly in ii) since fl > a t V ~ +  a2. We 
designed our quantitative Aronszajn inequalities so that iii) could be exploited. 

One now substitutes u = OF in Proposition 2.10. For ~ less than a suitable 
multiple of h: 

D l f l 3 O  -2# m a x  [FIZ+(Dz2+D3) 
(1 -~)6 __< ~=< (1 +~)6 

max I FI 2 > (D 4 2 + Ds)-"/z (3.1) 
h/4 < ~ <= 3h/4 

f12 max Igl2 + D6fl2 d ~ ~ - l - 2 " F 2 r - l  drdt 
h/12 <= f < h/4 g < ~ < h/2 

In the first term on the right hand side, we used standard elliptic theory to bound 
the L ~ norm of  F by a multiple of its L 2 norm. 

It is now straightforward to deduce the central result of this section: 

Proposition 3.2. Suppose that fl > a I ~22 + azfor sufficiently large constants a 1 and 
az. In addition, assume one has the lower bound 

fl> aa log ( max IF,./ max ,FI) .  
\h/4<=f<=3h/4 [h /12<e<h/4  

Then, we may write 

Dlfl3 t~ -2# m a x  IF[ 2 
(1 -~)6 =_< e < (1 +~)a 

> �89 (D42 + D5)-"/2 fie max ]flz 
h/12 < ~ <__ h/4 

+D6P 2z if  
6<_7<_h/2 

Proof. The additional hypothesis on fl allows one to absorb the last term on the 
left hand side of (3.1) into the first term on the right hand side. 

The remainder of this section is devoted to developing various corollaries of 
Proposition 3.2. We assume that the given hypotheses on fl are satisfied 
throughout. 

To begin, one has 

Corollary 3.3. 
max IFI _->D7(Dsfi) c'p max IFI. 

~8 < ~< 26 h/12 <= ~< hi4 

Proof. This follows by dropping the second term on the right hand side of 3.2 and 
applying elementary estimates. 

Retaining only the integral term on the right hand side of 3.2 yields 

m a x  IFt 2 > C 9  e - l ) 9 ~  I I  F 2 r - l d r d t  (3.4) 

Moreover, we may write 

Corollary 3.5. 

(i) max [F[>Cloe-~ max IFI 

(ii) max tFI > C1o e-~176 
~-<2a e__<~6 
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Proof Part (i) follows from (3.4) and the standard elliptic theory bounding L ~ 
norm by L 2 norm. The 2 dependence does not appear explicitly since 
fl > al ]//~ + a2. Part (ii) is a consequence of  (i) via simple logic. 

We return again to 3.2 and employ an alternative lower bound for the integral 
term on the right hand side. One finds that 

max F2 > Cliff  -x ~S FZr-X drdt (3.6) 

From this we deduce 

Corollary 3.7. 
-n--l .  

(i) max IFI > Dllfl  2 max IF] 

--n--1 

(ii) max ]Ft > Dllfl  2 max IF1. 
~=<~o +~) ~< (~ + ~)2 a/o -'~) 

Proof. Entirely analogous to the proof  of Corollary 3.5. 
One may apply Corollary 3.7 to obtain bounds for [VF[. Replacing O by 

6/(1 + ~) in (ii) gives 
- n - 1  

maxlFI =>Dllf l  2 max ]FI 

The theory of  elliptic differential equations implies 

maxlVFl_-< C~2flg -~ max ]FI 
~<6 ~__<(1+~)6 

Thus one has 
n 3 

Corollary 3.8. max I VF[ < D~2 fl~ + -~ 6-1 max [El. 

It would be interesting to improve the power of  fl appearing in Corollary 3.8. 
Since r = t '+  0 (r 3) it is straightforward to formulate these corollaries with the 

domains specified by bounds on r. We will do this explicitly for those results which 
will be quoted in subsequent sections. Let h < ho be sufficiently small. To satisfy 
the hypothesis o f  Proposition 3.2, it suffices to assume 

f l > a ~ V ~ + a  2 and fl>a~log(maxlF]/x,~<=h th/~O<=~=h/smax IFI) (3.9) 

Using Corollary 3.3 and Corollary 3.5 (ii), one deduces 

Proposition 3.10. I f  (3.9) holds, then 

(i) maxlFI  >(C13~) ~ max ]Fj 
r ~ 6  h/lO <=r<=h/5 

(ii) max [FI > e-n~'~max tFI. 
r ~  r<=2fi 

We need to derive a logical refinement. Assume instead that 

f l>al] /~+a2+a31og(maxlFl /maxlFl~  (3.11) 
\ r~h  [r<h/5 / 
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Then one has 

Proposition 3.12. I f  (3.11) holds, it implies 

max IFI > e-Ol"~maxlFI �9 
r < h/lO r < h/5 

Proof. If  max ]FI = max I FI the result is obvious. Otherwise, (3.9) holds and one 
r < h/lO r < hi5 

employs Proposition 3.10 (ii). 
A special case of  Proposition 3.12 is 

Corollary 3.13. Assume I l l  < 1 in r< h and max IFI => e x p ( - D 1 5 1 / ~ - C 1 4 ) .  
Then one has r <_ h/5 

max IFI > e x p ( - D 1 6  - C15). 
r < h / l O  

Let C16 be an upper bound for the absolute value of the sectional curvature in 
B(p, ho). Using Jacobi fields and the geometric treatment of elliptic theory [4, pp. 
16-18], we see that the constants of the above results depend only upon the chosen 
h < h 0 and C16. 

4. Eigenfunetions on compact manifolds 

Let Mbe  a compact C ~ Riemannian manifold. Suppose that Fis  an eigenfunction 
of the Laplacian A F =  - 2 F .  Since A is negative and self-adjoint, one has 2 > 0. 
We may normalize F in L ~ M, [[ F [[ ~ = 1. Our purpose is to extend the results of 
earlier sections using global considerations. 

Suppose that C1 is a positive upper bound for the absolute values of  the 
sectional curvatures on M. We apply our earlier results with h = bl C~ -�89 where b~ 
is a constant. I f x  e M, let B (x, h) denote a ball of radius h centered at x. Because M 
is compact, one has 

Proposition 4.1. For any x ~ M, we have 

max [FI > exp ( - C2 ]/2 - C3) 
B (x, h/5) 

Here the constants depend only upon an upper bound for i) the absolute values of  the 
sectional curvatures of M and ii) the diameter of  M. 

Proof. Our normalization 11FI[ ~o = 1 guarantees the existence of a point x o s M 
with IF(xo)[ = 1. Choose a finite sequence of  points Xo, x l ,  x2, . . . ,  xt = x with 
xi + 1 s B (xi, hi10). Of course, I is bounded above using the diameter of  M and C1. 

Suppose by induction that 

max IFI > e x p ( - D i V ~ - E i  ) 
B(x l ,  h/5) 

where the constants Di and Ei have the correct geometric dependence. Our choice 
of h guarantees that exp: T~ M ~ M is a local diffeomorphism. To avoid 
dependence upon the injectivity radius of  M, we lift our metric and eigenfunction 
to a ball B(0, h/5) c T~, M. This lift preserves L ~ norm. Applying Corollary 3.13 
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and returning from T., M to M yields 

max I FI > e x p ( -  Di+ x 1 / ~ -  E i+1) 
B(x,,h/lO) 

Since B(xi ,  h/10) c B(xi+ 1, h/5) this completes the induction, 
Replacing h by hi20 and applying the same argument gives, for any x ~ M, 

max b FI > exp ( -  C,  1/~ - C5) 
B (x, h/200) 

Therefore fl > a 4 ~ + a5 satisfies (3.9), for balls centered at any point p ~ M. 
Applying Proposition 3.10 gives 

Theorem 4.2. For any x ~ M, one has for c~ < a 6 h ,  

(i) max IFI > (C66) c ~ + c "  max IFI 
B (x, ~) B (x, h/5) - B (x, h~ 1 O) 

(ii) maxlF[ > e - C o ~  -c~o max IF] 
B(x,~) e (x ,2~)  

The constants appearing depend only upon an upper bound for i) the absolute values 
o f  the sectional curvatures on M and ii) the diameter of  M. 

Of course, Theorem4.2 (i) contains Theorem 1.1 of the introduction. 
Theorem 4.2 (ii) will be a major tool in the remainder of this work. 

5. Holomorphie  functions - lower bound 

Our goal in the rest of our paper is to establish upper and lower bounds for the 
nodal volume on real analytic Riemannian manifolds. Sections 5 and 6 are 
devoted to some preliminary results concerning the zero sets of holomorphic 
functions, These results will be applied in Section 7 to prove Theorem 1,2. The 
present section contains information relevant to the lower bound on the nodal 
volume. 

We begin with one complex variable. The basic result is then 

Proposition5.1. Suppose F(z) is holomorphic on I z ]<3  and maxlF(:)i 
Iz!<2 

< [F(0) l exp (Ca d). Assume F(x)  is real and non-negative for [xJ < 1. For d st(fi" 
ciently large, cover Ixl < 1 by disjoint subintervals Q~ of  length C2/d. Let e > 0 be 

given. Then outside a set E of  measure less than e, we have log F(x) - log Av F 
Q,. I 

< C 3, x ~ Q~ - E. The constant C 3 depends upon e but not on d. 

The proof of Proposition 5.1 will be presented through a sequence of  lemrnas. 
We may assume that e is sufficiently small and F(0) = 1. Constants appearing 
below may depend upon e. 

Choose r so that F(z) =t= 0 for I zb = r. The Blaschke factor is defined by 

(z -- oO/r 
Br(z' ~) = 1 - ~z/r 2 
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We may write F(z)  = e ~  I J  Br (z, ~), [zl < r. The product runs over the zeroes of 

Fin Izf < r and G is holomorphic. One has 

Lemma 5.2. F has at most  O(d) zeroes in r zl < 3/2. 

Proof. Choose r close to two and evaluate the corresponding Blaschke represen- 
tation at zero. 

Now fix r close to 3/2. The function G appearing in the product  formula then 
satisfies: 

Lemma 5.3. 

(i) max ReG < C3 d 
Izj=r 

(ii) Av ReG > 0 
Izi = r  

(iii) max [ 17 ReG I < C4 d 
I z l< l  

Proof Part (i) follows immediately from the Blaschke formula. For  (ii), one uses 
the mean value property of harmonic function. Part (iii) is deduced from (i), (ii) 
and the Poisson kernel representation of  harmonic functions. 

Definer(z) = y '  log l z -  ~1. Using Lemma 5.3 (iii) and elementary arguments, 

we have for x ~ Q~, 

logF(x)  - logAovF < If(x) -- l ogAve f l  + C 6 

The main part of  the proof  is to bound the right hand side. To begin one has. 

l-emma 5.4. Outside a set E 1 o f  measure less than ale,  we have If ' l  < C7d. 

Proof Since Ix - c~l = Ix - ~1, we may assume Im~ < 0. If  all Im~ < 0, then the 
definition of  the Hilbert transform [9, p. 130] H, gives 

f ' = H 2 q  ~, q , = - I m  

Clearly IX q, II 1 < C8, with C s independent of~. The weak type (1,1) property of  H 
[9, p. 187] completes the proof  for Im ~ < 0. Since these estimates are uniform in ~, 
the result also holds for Im ~ < 0. 

Suppose x, x, 6 Q~ and let A~ be the set of  roots ~ with Re c~ of distance less 
than m(Q~)= 0( l /d)  from Q~. We decompose 

f ( x )  = ~ log Ix--  ~z[ + ~ log Ix-- ~ I = b~ (x) + g~ (x) 

and estimate each of  the two terms. 
Define E2 to be the union of  those Q, with A, containing more than C9 roots. 

By Lemma 5.2, we may require the measure m (E2) < az e. I f  Q~ r Ez, then let 
Q,~ ~ Q, be the subset of  x~ Q, with I x - c~ r < C1 o/d for some ~. One may assume 
m(Q~) < a3 e/d < m (Q,)/2. 
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Lemma 5.5. I f  Q~ r E 2 and x~Q~ - Q~, then 

(i) I b~ (x) - max b~ (x) ] < Ca 1 
a~ 

(ii) ]b" (x) l < Ca2 d. 

Proof. If  x ~ Q v - Q ~ ,  then l o g l x - ~ l  > m a x l o g l x - ~ l -  C13, for each ~A~. 
xEQ~ 

Summing over ~ gives b~(x)> maxb~(x ) -  C~4, which implies (i). Part (ii) is 
x~Qv 

immediate from the definitions of E 2 and Q~. 
We now turn to g~. Since g'~ = f ' - b ' ~ ,  the following is immediate from 

Lemma 5.4 and Lemma 5.5 (ii): 

Lemma 5.6. Suppose Q~ dg E 1 w E 2 u Q~, then there exists x ~ Q ~  - Q~ with 
Ig'~(x,)l < C 1 4 d .  

It is also necessary to estimate the second derivative. There exists a union E 3 of 
intervals Q~ with m(E3) < a4e so that one has: 

Lemma 5.7. I f  Q~ r E3, then max I g~ (x) t < C15 d2. 
xEOv 

Proof. Clearly I g~' (x)[ < C16 ~ Ix - ~[ - 2 and the right hand side has a constant 

order of magnitude for x~Q~. Thus 

~ m a x  lg;'(x)I [Q,[=<C,7 Z ~ [ x - ~ l - 2 ~ C , 9  d2 
v Q~ a Ixl<l 

ix_Re~i>C~sd 1 

This implies the existence of E 3 so that the conclusion of  Lemma 5.7 holds. 
It is now easy to deduce 

Lemma 5.8. Suppose Q~ r E a u E2 ~ E3 u Q~ ~ and x~6Q~ is obtained from Lem- 
ma 5.6. Then for x~Q~ one has [g~(x) -g~(x~)I < C2o. 

Proof. This follows immediately from Lemma 5.6, 5.7, and Taylor's formula with 
remainder. 

Suppose Q~ ~z E 1 u E2 u E 3 u Q~ and xE Q~ - Q~,. Using Lemma 5.5 (i), 
Lemma 5.8, and elementary arguments, we find that 

f ( x ) - - l o g  AVQ~ e y < Czl 

This completes the proof of Proposition 5.1. 
We now turn to several complex variables. It is straightforward to derive 

Proposition 5.9. Suppose F(z) is holomorphic on z~C", pzJ < 3, and satisfies 
max IF(z) l < [ F(0) I exp (Bx d). Assume F(x) is real and non-negative on the cube Q 
[z[<2 
given by Ixil < 1, 1 < i<_n, in R". Additionally, suppose that F(x  1 . . . . .  xi-1, O. 
xi+ 1, . . . ,  x , )  = 1 on any hyperplane x i = O, 1 < i < n. For d sufficiently large, 
subdivide Q into cubes Q~ of  side Bz/d. 
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Given e > 0, outside a set E of  measure less than e, we have 

l o g F ( x ) - l o g  AvFQ~ < B 3 x ~ Q ~ - E  

The constant B 3 depends upon e but not on d. 

Proof. This follows from Proposition 5.1 by induction. One successively averages 
over each coordinate direction. The extra technical hypothesis that F = 1 on each 
coordinate hyperplane is crucial for this argument. 

We proceed to remove the technical hypothesis of Proposition 5.9. Define 
maps Tj by 

Tj (x1 ,  x 2 . . . . .  Xn) = (X l ,  x 2 ,  . . . ,  x j ,  x j  xj+ 1, " ' ' ,  Xn) I < j  < n -- 1 

T , ( x l , x 2  . . . . .  x , )  = ( x o x l , x 2  . . . .  , x j ,  . . . ,  x , )  

Set T = T, T,_ 1 ... T1 and W-- T z. This mapping W then satisfies. 

Lemma 5.10. W maps every coordinate hyperplane xi = 0 to the origin. The 
Jacobian determinant of  W vanishes along the coordinate hyperplanes only. There 
exists an open set U c  Q so that W: U ~ W(U)  is a diffeomorphism. 

Proof The first two statements are verified by direct computation. The last 
assertion then follows from the inverse function theorem. 

The main result of this section is: 

Proposition 5.11. Suppose k is a sufficiently large integer depending on n. Let G(z) 

be holomorphic in I z l < 3 k, z e C", and satisfy max ] G (z) 1 < 1G (0) l exp (B 4 d). 
Izl<2 k 

Assume that G (x) is real and non-negative for real x e Q, ]xi[< 1. Suppose R is a 
suitable cube contained in Q. Subdivide R into cubes R u of  sides having length Bs/d. 

Let e > 0 be given and suppose dis sufficiently large. Outside a set E of measure 
less than e, 

log G (x) - log AVg, G < B  6 x e R u - E  

Proof. We may assume G(0) = 1. Choose R c W(U)  where W(U) is obtained 
from Lemma 5.10. The function F =  G o Wsatisfies the hypotheses of Proposition 
5.9. The conclusion of  Proposition 5.9 then implies that ifQ~ c U, one has, outside 
a set of measure as e, 

log G (x) - log W(Q,)Av G (x) < B 5 

since the Jacobian of W is bounded on U. For d sufficiently large, we may assume 
that each R u is contained in some W(Q~) except for a union of R, whose total 
measure is less than a 6 g. Also, one may require that B6 < l m  (Ru)/m (Q~)I < B7. 
Proposition 5.11 then follows by elementary arguments. 
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6. Holomorphic  functions - upper bound 

We continue with certain results applicable to the upper bound for the nodal 
volume. Consider first the case of one complex variable. Let F(z) be analytic in 
some open neighborhood of  I z l < 1, with I F(z) l < 1. Denote by l the number of 
zeroes of  F in ]z] < �89 One has 

Lemma 6.1. l_< C 1 logmaxlF(z)l  �9 
Izl<�89 

Proof Let a l ,a  2, . . . ,  a t be the zeroes of  F in Izl <1 .  One has the Blaschke 
representation 

1 

__i~i1 Z - -  a i F(z) = G (z) l----d~,z" [z] < 1 
i=  

The maximum principle gives I G (z) I < 1. Therefore, for [zl < �89 there exists Ca < 1 
with IF(z) l < C~. 

The basic result for a single variable is 

Proposition 6.2. For every integer k > O, we have 

l < C 3 ( k +  log ( 1  IUk)(0)[) ) .  

1 F(k)(0) < 2 k max IF(z)[. Now apply Proof Cauchy's integral formula gives ~ = izl_<~ 
Lemma 6.1. 

We now turn to several complex variables, z e C". Suppose F(z) is holomorphic 
in a neighborhood of  Izl < 11/10 and satisfies [F(z)l <�89 Let x e R "  denote the 
corresponding real variable. Define 

~ ( x ) = i n f k +  ~ ~l~?~F(x)  l de) 
k ~ O  c o ~ S .  ~ 

One has 

Lemma 6.3. Let N~ denote the set of  points x with [xb < 1/20 and F(x) = O. Then 

~ " - I ( N F ) < C  4 ~ ~g(x )dx .  
Ix[ < 1/t0 

Proof By the theory of analytic sets [7, p. 337] the singular points of Nv have n - 1 
dimensional Hausdorff  measure equal to zero. Therefore, it suffices to consider 
the regular manifold points of  N. 

Let ~ (x, o~) be the number of  points of  intersection of N with the line throt.~gh 
x~R"  having direction weS"-1 .  Integral geometry [7, p. 2] gives 

9ff "-a (NF) < Cs ~ ~ s (x, o9) do) dx 
[xl < l / t0 S "-1 

For fixed x, look a t f ( t )  = F(x + tog) defined for complex te C, t t l < 1. The lem~a 
follows by applying Proposition 6.2 to f 
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To estimate J r  we employ a fact f rom calculus: 

Lemlna 6.4. Let P be a polynomial of degree j on R". Suppose max PP(co) l = 1 ,for 
]ogl = 1. Then 

S [log I P(co) [] dco < C6j. 
t o l = l  

Proof Choose spherical coordinates (~b, 0) where - zr __< tp < g and 0 is a coor- 
dinate on the hemisphere S~_- 2. Assume I PI = 1 at the nor th  pole ~b = 0. For  fixed 
0, we may write the restriction of  P to S" -  1 as P = P1 (cos ~b) + sin ~b P2 (cos ~b). Set 
P = PI (cos ~b) - sin q~/>2 (cos ~b), and Q = PP. 

For fixed 0, we may write Q0 (cos q~) = _+ 1-[ (cos ~b - ~)/(1 - ~ ) ,  with j0 _-< 2j. 
V = I  

Here we used the fact that  Qo(1) = 1 and the ~v are complex numbers. Thus 

" ~ J, cos ~b - ~ sin"- 2 
log I Qo (cos q~)t sin"- 2 4~ d~b = j ~ log 1 - 7~ ~b d~b >= C7j 

0 0 v = l  

Integrating over tiES"+ -2 and recalling the definition of  Q gives Lemma 6.4. 
We will apply Lemma 6.4 with P (co) equal to a multiple of  c~ F(x), for suitable 

k. Let d =  [ l o g m a x l F ( x ) l [ > l o g 2 ,  with [xl < 1/5. One has 

Lemma 6.5. For some positive c o n s t a n t s  B2, B3, independent of F, 

1 
max 0ko F(0 ) ___B2 a 
Itnl =1 k.W 

for some 0 <_ k <_ B 3 d. 

Proof We argue by contradiction. I f  the claim fails then for l col = 1 and I t[ _-< �89 

B3 d 1 

k=~o ~ 0~F(0) (tco) k < 2Bg 

Also, the analyticity o f f ( t ) =  F(tco), teC, ]t[ < 1, yields, by Cauchy's  integral 
formula [ ~  F(0)[ < k!, for all k. Thus 

Adding, we get for [co[ = 1, [ t l < �89 ]F(tco)] <= 2Bg + 2(�89 This contradicts the 
definition of  d. 

Combining the last two results gives 

Lemma 6.6. Jg (0) =< C8 d. 

Pro~2[. Let k < B3 d satisfy max ~ F(0) = A > B~. We apply Lemma 6.4 to 
Lcol =1 

the polynomial P(co)= 1/k! O h F(O)/A, of  degree k: 

j log ~ , o F ( 0 )  - l o g A  = C  9d 
poJI = 1 
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Since B g < A < I ,  I logA[<B4d.  The result now follows from the triangle 
inequality. 

We are prepared to prove the main result of this section. Suppose that H(z) is 
holomorphic in Izl _-< 2, zeC".  Assume that ~ > 1 and 

max I HI > e-B,~ max IH(z) l 
B(x, U5) Izl <2 

for x~R" ,  txl < 1/10. Here B(x,  1/5) c R" is a ball of radius 1/5 centered at x. 
Under these hypotheses we may conclude. 

Proposition 6.7. ~ "- 1 (Nn) < C1 o 5. Here Nn is the set of l x I < 1/20, x ~ R", with 
H(x)  = O. 

Proof Set ~,=2maxlH(z) t .  Applying Lemma6.6 to the translated function 
Izq<~ 

F x (z) = H ( x  + z)/x, Ix[ < 1/10 gives Jg  (x) < C11 ~. Here ~ '  (x) is the ~ '  corre- 
sponding to F o (z)= H(z)/7. The proposition now follows by using Lemma 6.3 
for Fo. 

7. Volumes of  nodal sets on compact manifolds 

Suppose that M is a compact real analytic manifold with analytic metric. Let F be 
an eigenfunction of A with eigenvalue 2. Our purpose is to present proofs of the 
upper and lower bounds in Theorem 1.2. We may assume 2 is sufficiently large. 

Let U be a sufficiently small coordinate neighborhood on M, where the metric 
can be expanded in power series. We identify U with a ball B(0, 0o) about the 
origin in R" c C". One has 

Lemma 7.1. The eigenfunction F extends to a holomorphie function on 
Izl < 01 < 0o, z~C".  Moreover, if x~R",  

sup IF(z)l <--e E'~s sup IF(x)I. 
Izl <0~ bxJ <~o 

Proof The fundamental estimate proving analytic hypoellipticity [8, p. 178]gives: 

] D~u(0) < 2 t~t/2 Ilull -m- co 

for eigenfunctions u on ball B(0, Cz 2-�89 The point is that an operator with 
bounded coefficients is obtained after rescaling to balls of radius one. Summing a 
geometric series gives a holomorphic extension of u with 

sup lu(z)E < C4 sup_~lu(x)j 
Iz1_-<C32 -�89 [xr<C22 

The lemma follows by applying this with u equal to a translate of  Fand  iterating 2~ 
times. 

The next result is fundamental in the proofs of  both the upper and lower 
bounds: 
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Lemma 7.2. For any ~2 < ~o 

sup IF(z)l < e  E2~ sup JF(x)l 
Izl<~l Ixl <42 

The constant E 2 depends upon Q2. 

Proof. The assertion is an immediate consequence of Lemma7.1 and 
Theorem 4.2 (ii). 

First, we prove the lower bound of Theorem 1.2. It suffices to consider the 
nodal points contained in a single coordinate patch U. A standard argument [3], 
[6] shows that there is at least one nodal point inside every ball of radius al 2 -~. 
Cover Uby cubes Qv of side a 2 2 -~, a 2 > a l ,  so that there exists a nodal point xv in 
the middle tenth of Q~. Choose a s so that B~ = B(xv,a  3 2 -�89 is completely 
contained in the middle �89 of Qv. 

One uses Proposition 5.11, for the non-negative function F 2. The required 
hypotheses are guaranteed by Lemma 7.2. This gives 

Lemma 7.3. There exists a f ixed cube R c Q, so that given e > O, sufficiently small, 

log F2 (x) -- log A v F  2 < C 5 x~Rc~Q~ 
~d 

v 

for x outside a set of  measure less than e. The constant C 5 depends upon e. 

Let Rv c Q~ be the set of  x where the inequality of  Lemma 7.3 is satisfied. A 
logical corollary of that lemma is 

Lemma 7.4. At  least half of  the Q~ satisfy m(R~)>(1 -a4e )m(Q~) .  Here m 
denotes the measure. 

The symbol S a will denote the set of those Qv satisfying Lemma 7.4. Fix e > 0 
sufficiently small and consider only those Q~s6 ~. Clearly, one has 

A v F  2 _-> e -c~ Av F 2 (7.5) 
One deduces 8~ e, 

Lemma 7.6. 

(i) IIFllL=w~)<E3 ~ B~ 

(ii)( 1 )�89 1 ~[F P . 
~ <E4m(B~)  By 

Proof. Standard elliptic theory gives 

Q, 

Part (i) then follows from (7.5). Elementary arguments show that (i) implies (ii). 
Using Lemma 7.6 (ii) and the Cauchy Schwartz inequality we find 

Lemrna 7.7. I f  G, c B, is a measurable set then 

IFI < E6 { m ( G v ) ~  ~ IF1. 
a, = \m  (B~)) B, 
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I f a  3 is sufficiently small, then we can solve the Dirichlet problem for A + 2 on 
balls B(x~,r), 0 < r < a 3 J,-�89 Rescaling to balls of radius 1, one has a small 
perturbation of the Dirichlet problem for the Euclidean Laplacian on the unit ball. 
Thus, we may write 

0 = F(xv) = ~ ~b (x) F(x) dO (7.8) 
jx~ --xp =r 

where 0 < C7 < ~b (x) < E7. Also, dO denotes the volume element on the standard 
unit sphere S"-a.  

Multiplying (7.8) by r"-a and integrating in r, we find that 

0 =  ~ qSF 
B~ 

Let G + c B~ be the set where F > 0 and G~- the set where F < 0. From the bounds 
on 4, we deduce 

Lemma 7.7 then gives 

m i n ( ! + l F I ,  f l F I ~ C s ~ I F I  
G~ G~- / B~ 

min (m(G~+), m(G~-)) > E 8 re(By) (7.9) 

One now invokes the isoperimetric inequality [7, p. 476] to give a lower bound 
for the nodal volume inside By. Here we recall that the nodal points N form an 
analytic set with finite n - 1 dimensional Hausdorff  measure. Thus 

9ff"-l(Nc~BO> C9 (/~-�89 n-1 

Summing over those Q ~ 6 e  preferred by Lemma 7.4 gives 

~ " - ~ ( N ) >  ~ ~ " - l ( N ~ B ~ ) > E 9 2 ~  

This completes the proof of the lower bound in Theorem 1.2. 
Using (7.9) and the previous discussion one has 

Corollary 7.10. Let M +, M -  be the set of  points in M where F> O, F< O. Then 

min (volM § v o l M - )  > CloVOlM. 

It remains to establish the upper bound on the nodal volume. Let U be a 
coordinate patch where the conclusion of Lemma 7.2 holds. Proposition 6.7 yields 
V c U, a patch having the same center point, with 

oW "- 1 (N n V) < Cl 12~ 

The V are independent of 2. By compactness, we can cover M by a finite number of 
such V. The upper bound 

, -  1 (N) =< E a 12~ 

follows immediately. The proof  of Theorem 1.2 is complete. 
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