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A unique continuation theorem for solutions of elliptic
partial differential equations or inequalities of second order;

Bv TV. AROIVSZAJA^ (')•

1. A measurable function u defined in a domain D of the euclidean

ra-space &"• is said to have a zero of order a ^ o at € D in the
p-mean ( x ^00 ) if

r \u\Pdx —Q){rP''- '̂').
J\x-x,\<_r

If p fq, a. zero in g-mean is a fortiori a zero in p-mean. The usual
definition of a zero of order a [i. e. that except on a set of
measure o | u(^x') | = 0(| a;—^01*) for x a^o] corresponds to a zero
in p-mean for p= 00 . The zero is said to be of infinite order if it is
of order a for all a ^ o.

Consider solutions u of an inequality of the following-kind
In I \

du{.v)
(l.i) \ku{x)\-^M\^

dx'

Here A denotes a linear elliptic differential operator of second order,
in general with variable coefficients, and M a positive constant.

Our purpose in this Note is to px'ove the following theorem for
solutions of (1.1).

Theorem. If u is a solution oy (1. i) in a domain D and if at .some

(') Paper written under contract with Office of Naval Besearch Nr. 58.30V.
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236 N. ARONSZAJN.

point cco in D u has a zero of infinite order in the i-rnean, then u vanishes
identically.

We state below the restrictions on A and a under Avhich we prove
the theorem.

1° The principal part of A, a'j should have coefficients a'J of
class (i. e. of class C'- and with second derivatives lipschitzian),
all other coefficients of A being uniformly hounded. We can and
will suppose (because of ellipticity) that [a'J] is a positive definite
matrix everywhere in D.

2° a is in the neighborhood of every point of D, the restriction of a
potential of order 2 of an L--function, the potential vanishing outside
of a compact in &"•. Essentially, this is equivalent to the fact that
locally a has strong L'-'-derivatives of first and second order (-). With
this general assumption on a, (i . i) will he assumed to he true only
almost everywhere in D.

The validity of the theorem for domains of &" implies, obviously,
its validity on a differentiahle manifold. a'J is then a contravariant
tensor and in view of i° we shall have to assume that the manifold is

at least of class
For the case of two dimensions, the theorem is essentialy due to

T. Carleman [1]. It Avas proved recently for /«-dimensions by
C. Muller [2] and E. Heinz [3], the operator A being the ordinary
laplacian, and the function n being subject to somehoAV stronger
restrictions. C. Muller considered, essentially, the inequalities of
type (1.1) with right hand side reduced to M| n(a;) |'-, AAdiereas Heinz
considered them in the form given above. ' Both authors made
extensive use of spherical harmonics in their proofs (^).

Heinz reduces the proof to the folloAving inequality

(1-- \ X I 1\u \-dx \cr"-J
t z|a:|<r

dx.

('-) With Lhe first definition u is niucli more precisely defined; its derivatives
of the first two orders exist in the ordinary sense and are locally L-.

(•') Recently the autlior was informed tiiat P. Lax obtained a proof for the
laplacian with<jut the use of splierical harmonics.

-•* I 1
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Avhere i, a ^ o, u is a function of class vanishing outside of a
compact contained in o <(^ |u; | <(^ /•, andc isa constant depending only
on the dimension n.

Our proof is based on aninequality similar to(1.2) foran arbitrary
operator A satisfying our restrictions. The next feAA^ sections aauII he
taken up Avith tlie statement and proof of the inequality. hen A
is the ordinary laplacian our line of proof becomes much simpler
and in fact is shorter than the original proof oJ Heinz.)

287

2. We may and shall assume that the domain D is hounded and
Avill consider it as a differentiahle manifold of class C". Consider,
there first the metric

ds'-z=Uijdxdlxi (Q

Avhere the matidx jaif is the inverse of ja'j j.
For a fixed point ujoSD and variable point denote by r the

geodesic distance from a--,, to sc. With a constant v to he defined in
the next section we shall introduce neAV tensors

(2.1) aii=(r--"-chj,

and the corresponding Laplace-Beltrami (L. B.) operator

(2. a) A = — -y—. V'« a'i-f-.,
d f * dc'

In the corresponding metric d's-= a,jdsc'dscJ let r he the neAA'

A = -77: \'a a'' ) where u ~ Del | ~i,/ j.

geodesic distance hetAveen and cc. It is clear that in both
metrics and ds^ the geodesic lines issued from Xo are the same and
the distances r and r are related as I'oIIoaa's

(2.3) /•= r e-""d'j.

Denote by S/fxo) the geodesic sphere r<fh in the metric dP.
Our basic inequality can he Avritten as folloAvs

(2.4) J' ~ Î "I' V" ^ ^a'i -H Ii£ |- j\Ja dx.
S/,T.Vo

(♦) From now on the usual convenlion will be applied thai repeated indices
imply summation.
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Here u is a function of class C" vanishing outside of a compact
contained in S/i(a7„) —{ccg any positive constant, h^r'. /•' and c
are constants independent on u and a, dependingonlyon the tensor a'J
and the position of o^o in D.

In order to describe more specifically the dependence of the
contants v, r, and c on the tensor a'j and the position of cco, denote
by 2 R the euclidean distance from a;„ to the boundary c>D of D ; by 0
the upper bound of the eigenvalues of the matrices | a'J] and {a,-y | for
all points cc in the sphere |a; —a-'o | R. Furthermore, let B, be the
upper bound of absolute values of all derivatives of order of the
a'J in the sphere \x —a:?o|^R + £ and B=:limB.. The third

aerivatives may exist only almost everywhere but will have a finite
essential bound since the second derivatives are lipschizian. The
possible discontinuities of third deriuatives are the reason for
choosing B= B, instead ofB= B^. We put

(2.5) r=max( 0, B, n

The constants v, c, /•', will then be determined as positive conti
nuous functions of F, the first two increasing, the last decreasing.
Inaddition 7-'will be determined so that the geodesic sphere S,.-(a;o)be
contained in the euclidean sphere \x —.ci7„ | <^ R. We do not give
here an exact determination of these functions since it is sufficient for
our purposes to establish their existence without having the exact
form.

We now remark that if formula (2.4) is established for tensors a'J
of class C with the constants v, c, and /•', satisfying the above speci
fications, then it is also valid for tensors of class In fact, by
regularization of a'J one obtains a sequence of tensors ol'J of class G"
whose constants Fwill converge to the constant Fof a'J. In addition,
the ct'j and their derivatives of orders ^ 2will converge uniformly to
the a'j and their corresponding derivatives. It follows that in (2.4)
every term depending on the tensor a'J is a uniform limit of the
corresponding terms for the tensors a'-'' and hence the validity of the
formula for a'J implies its validity for a'J. This fact will allow us in
the next sections to restrict ourselves to a'j of class C".

A- ^ I
I .> , 'fV*
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5. Now let be a positive definite tensor ofclass C°° in D. For a
neighborhood of Xo we introduce the classical geodesic coordinate
patch. To this effect consider <S" as the tangential space of our
manifold D at Xo. The points (or vectors) in the tangential space
will be denoted by ^ and its originwill be chosen at Xa- The norm
in this space is given by the metric tensor a,7 at the point x^ and bya
suitable choice of coordinates we can make it into a euclidean
norm 1^1' = 1^^(H')^ To a point ^in this tangential space we assign a
point u; in D as follows : Take the geodesic line (in the metric
ds' —Ujj dx'dxJ^ issued from Xo and tangent to the vector c. On this
geodesic line letx be thepoint atgeodesic distance |^| from Xg. The
construction will be made only for | S where is chosen small
enough so that any two diffcrents geodesies issued from x^, and of
length have no points in common except x^ and so that the
geodesic sphere S,...(£t-"o) lies completely in the interior of the euclidean
sphere \x j<(R. By checking the classical proofs of existence
and local uniqueness of geodesic lines it is easy to show that r" can be
chosen to depend only on F and to form a continuous decreasing
function of F. The correspondence H x is then a homeomorphism
of class C" transforming the sphere, Z,.. : | E| <^ 7-" onto S,...(u;„);
clearly, | E]—the geodesic distance r from Xo to x.

We now choose a finite number of coordinate patches covering the
hypersurface : ]E[= i, witli local coordinates d, t"-'. These
coordinate patches will be fixed once and for all independently ofthe
tensor a'J (but depending, obviously, on the dimension 77). In this
way we obtain the geodesic polar coordinates F,
geodesic sphere S,...(a7o)- For the metric ds^ we
expressions
(3.1) 7^^ = gtj d'j d'd= dr--H /•- y;/ dd dv,

where
d.v'i dx'

i = "k.l dl' dV

V'- r in the

now have two

The y,7 form a metric tensor on the hypersurface <?S,.(a;o) for every
fixed 7')> o. .We write

7 = Deify,./!, tf' ! = fyu I"'-
• 7

,'' I'
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By checking- on the correspondence x and the expression of gij
and Y,y in terms oftlie tensor a,y, the derivatives and the Iransfor-

01'

mation of the cartesian coordinates E' into polar coordinates V, r, we
obtain easily that there exists a positive constant B' depending-only
on r, continuous and increasing as function of F, sucli tlial the
eigenvalues of the matrices {"Xij] find | { as well as the values of y

and ^on all hjyjersurfaces clS,.(iCo) for o<E r^r" are bounded by B',

and such that all the partial derivatives
Pyi/- ^;iy// t^y ()y

Or Ot^ Or- OrOl'^ Or Ol''

are bounded in absolute value by B'. Furthermore, if
Or- ' Or Ol'^

r o, yo converges , uniformly considered as a tensor on Ol^
(^^ij converges to the metric tensor induced on OH, by the euclidean
metric).

From the well known property that

Orand ^ ^o when 7- -y o and hence

(3.2)

It is clear thatis a contravariant tensor on tiie hj'persurface

The reason for changing the metric ds'- into dP — ds- is to make
the last tensor positive definite for ("')• Tlie geodesic
polar cooi-dinates for dP are abtained from those for ds'̂ only b}- the
change of variable 7- into r given by (2.3). The expression of dP in
terms of its polar coordinates is therefore

Or"'.

Or''

Or
IVr,

0^i/(o) . Or''
^ L, = o we get -j-

(t'* ° Or

Or
:IV/-.

ds ' — clr' -t- /•- /? Yi/ dl' dli ~ dr' -f- r-y,-/ dl' du.

(") Tlie aullior is indebted to Professor K. T. Smitli for raising the conjecture
that sucli a change of nietiic may achieve the desired result. The geometric
significance of tlie change is that the new metric has a positive curvature in the
neighborhood of .r-,). If tlie metric ds' already had a non-negative curvature we
would not have to make the change. This is actually what happens in the case
treated by lleinz whore ils' is the ordinary euclidean metric.

\

•
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It follows that
/•-- e'

/•'

o~Y '''''
07-

and, hence,
r'e-"' ,,

y"= —

241

If ti is any covariant tensor on dS,.(tro) we get from (3.2) and the
properties of the constant B' thai

Or''

and

Op'
07

p' r-'i r /e--"-' I
• IV I -B'-T; pi hij.

, We choose v= B'-r. Sinceby(2.3) r<(7-and siiTcet? —1)>—vr-
the square bracket in the last inequality is

>• [2(— V/• -I- 2vr) —B''-rr] = B'-Tr.

Hence with this choice of V' the tensor is positive definite on

all dSY(a-„) for

o < r- ^ 7 r e-'" dr.

By a similar argument one verifies that the above choice of the
1• 0 log ^ „constant v implies —"C o- , '

It is immediately seen tliat for the metric and tensors with i^the
same developments, properties, and evaluations hold as for those
without ~ except that the constant /•" should be replaced by r" and B'
by a constant B' which is easily determined and which is again a
continuous increasing function of F.

4. We come now to theproof ofthebasic inequality (2.4)- Since,
in the present section we deal only with the operators and tensors
with and corresponding polar coordinates, it will simplify
notation to skip the The B-L operator A in the polar geodesic

Journ. de Math., tome XXXVI. —Fasc. 3, 1957. 3I
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coordinates now has the following form

(4.. I) Au
d'-u

'dF
— I 0 lof)

f)r

Ou

Or '•'v/y

d /- dtt.
T-- V ^ y ' ••()l' ^ ' f)ll

It is important to notice that \J^ is the density corresponding to the
metric on each hypersurface (?S,.(a7o) and hence depends on
the choice of local coordinates t'. But the expression
function defined on dS,.(a;o) and in view of (3.2) is hounded
^^y-B r. The integral in the left member of the inequality (2.4)
can now be written in the form

(4.3) I/,: r-'^'lAu \J-fdrdt.

d log ^/v .
- IS a

dr

This integial will he changed as follows. We introduce a new
variable by putting r = g-P. The function u= u{t, r) becomes now
a function <,{t, p) = jz(^, e-% t^dZ, and 7^<p<oc, /, = —log h.
We next put p= a 3+ ^ ^^d r= e-3? w. Henceforward we will
denote derivatives with respect to cby primes. After these transfor
mations, our integral becomes

('•••3) I«•"-(« -2-1-3,5

? (P -H /t—2—p.) (-v + Ap |- (/(' dt dp.
Here Ap denotes the B-L operator on the hypersurface c^SAa^o)
tor r= e Pjvith respect to the metric y.jdt'dU, j. e. the opera-

d!t' dd' H- denotes the expression In view of our

previous evaluation for dlog^/y
ut

('̂ •4) o<p^I|r2e-,p

The calculations will be simplified if instead of the integral 1,, we
consider

o we obtain

(4.5) •2-t- 2(3) w' -t- P(P + 72 —3) w-1- Ap (V I'-' y'y dtdp.

'k

f

1. •.
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It is immediately seen that

(4.6) r f lJ--\w'—^w\-'\Jrdtdp.
2 dy

Our hypotheses concerning the function u imply that the function w
is of class C"" and vanishes for poutside ofa finite interval completely
interior to the range 7^<(p<^oo. We transform the integral I,, by
developing the expression | . . . p and using partial integration in two
ways : one, integration with respect to p for fixed t and secondly,
integration for fixed pover the hypersurface dZi. This last integra
tion by parts uses the well knowm formula that ift'-' is a contravariant
tensor on dZi, and <p and are two functions on dZi, then

dddd^-

Combining these two procedures, one transforms the integral I,, into
the following form 1

(4.7) 11= |l w'T--l- (2p-l-«-2)P-l«"l^
. . dw dw_ (3^ + 72- 2+ 2,^) (Y'Q^^

-1-I Ap w-1-1^(3 ((3-1-« —2)-h (^(3-h -

..dw'dw'] r u.!

- ,, mdw dw
-[(fO"+(i^'+T-)f']^ 577

-J(Jij «' 1̂ \J-pdtdp

j^(3(P -h « 2) p.'—
n — -2

T".! . Ti.^ I Tn.:i
, = Ui -t- i/i •+-1/1 •

In'the integral 1°/ all the terms are positive since fi. )> o,
2(3-t-/2 — 2=r2a-+-2>>2

• ;• •». /K-W

\/y dt dp

Ix'V

••J". "I'V
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and —(y'-i)' = ^ g-P is apositive definite matrix. It is easy to prove
also that the integral 1)''" is majorated as follows
(fp.s) \\y'\^\y'e-7Ai'\

where B" is again a constant depending only on F, continuously and
increasingly. Similarly, for the integral in (4.6), we have

(''••9) f f [J--1 |3 (V |-v/y

These facts are established by using the properties of the bound B'
and also the following formulas and evaluations : formulas (3.2)
and (4.4)

f-' = (logv/4')" = «-'-p + c
or- OrOr

(jMogy/y

O'-y'i d"'i

ctjJ.
OT' 00 Or

e-P,

4' dt dp

- f" f (•'"'¥ —y-'Jidf.Jy <)l' dt!) ' Ol' Ol'^ ' '

v'/
.Oiv' 0(v'

00 Ou

Finally, we use the evalution

Cl'-'O) jr'°|(v'l=vy '̂'P
A similar formula is valid for w replaced by

from (4.6), (4.8) and (4.9) that if/i:= < i.

Ow' Ow

'00 'Ofi

~yi>i /_j

O^v

Oi'

Ow

(r> o).

It follows now

OSV' Ow' )
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We choose 7-'=
6 B" H- 1

and turn to the second member of the

inequality (2.4). As in the first member we replace the coordi
nates x'' by geodesic polar coordinates, then introduce the variable
p(7- = g-P) and also the function tn. The integral becomes

(4.1 p(hv' l-^-i-j3(|3-t-pi —3)hvl"-

^ '"'S I'] ^
An argument similar to the one which led to the evaluations (4.8)

and (4.9) [(4.1 o) being used with ^= 2 instead of ^= i ] gives for
the integral (4.12) anupperbound B"'c~-^- IJI'" = B'" h'- IJ|', B'" depen
ding again only on F, continuously and increasingly. Together

ywith (4.11) this gives (2.4) with the constant c= 4B'".

1). The remaining part of the proof of the theorem is relatively
simple and we indicate it briefly.

If a function u satisfies the conditions of the theorem we notice first
that obviously for some constant M' (depending only on INI and F,
continuously and increasingly) we have

.On (a;) OTi{x)
OoTi O.iO(3.i) IA77 (.r) j-^M' dt'/ 1"(/») I'-j [a-eS,.(tCo)]-

Let7-„=gmin(^;-', ^/^j- In (2.4) take /t==3r
function ip of class G' vanishing outside ofS,,,(a?o) and=i in S,,X^o)-
Put 77i = p77. We first prove that the inequality (2.4) is valid with
the function iii replacing u.

We note first that for each fixed a>o the integrals in (2.4) are
finite. To prove this, it is enough, in view of(5. i), to show that 7/1
as well as all derivatives have zeros of infinite order at x^ in the

2-mean. To prove this last fact we remark that by Sobolev's theo
rem [4] thesecond derivatives of 11 ybeing L^, uisa function ofclass L'
with some 77 > 2. The Holder inequality then shows that Uy having
a zero of infinite order in i-mean implies that it has such a zero in

Consider a
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2-mean. We then apply the identity
n

di>

(valid for vanishing outside ofa compact), to the function

Here . 4'(^) is^a function of class C" vanishing for|ic|^i, =i
for Ia;| ^ - and o<( (p(a;) <( i for ^<^|a;|<^i;o<(£<\i. Thus we
obtain

^ ()a;^ f IMl |-(Go+CiS '+ C2E '),
1^—-roK; \>^| 2:-.x-„|<E /

where Co, Ci, C2, depend on Wj but not on £. This proves our sta
tement about

d̂x'^

For the above function ([i, put

K= / <]f{x)dx and ,d>^{x) —r^^

Then by convoluting i^with the function equal to Ui for |cc—ccu |^2£
1^ a7o|<^2c we obtain a function /q ^satisfying, forsufficienUy small z, the requirements of inequality (2.4),, and such

t at the integrals in (2.4) for econverge to the correspondinginte-
grals for M, when £-> o.

The inequality (2.4) for u, and h= 3r, together with (5. i) and
the properties : a= u, for S,,(a;„) and ch=M'̂ ~give, by an argu
ment due essentially to T. Carleman (used in the form below by
E. Heinz), that for all a ^ o.

&+1 «l'] [""'feg +1«. I'] v«
which implies that «= oin S„(a;o). Since is apositive continuous i'Vl

Ifl
W

„ < : L; • '

\v
I
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and decreasing function of F which is uniformly bounded for cco in
any domain D' completely interior to D, an obvious argument proves
that M = o in D.

Remark 1. — For any 9 with o^0<(2, we can obtain, instead
of (2.4), the inequality

4 ch--^ r .w I r I., • . r ~ o~ I ~ n~,: 077.

(a-
a dx.£ 7- -,1 Am |-^ d.v ^£ 7— I7- 0 '̂/ +T"-" 1̂« 1'̂ ]

The argument leading to this inequality is exactly the same as
for (2.4); but in evaluating the second member we useformula (4. i o)
with T= 2 — 0 instead of t = 2. The above inequality allows us to
obtain the unique continuation theorem when (1. i)is replaced by an
inequality with a singularity at

;Au{x) I'' 1M 11 —Xo da (X)
dx'

\x —Xo Ia{x) !" h

It is interestina: to notice that if we consider solutions of the last ine
quality with 0^2, simple counter-examples show that the unique
continuation theorem is no longer valid.

Remark 2. — We mention that our theorem allows us to establish
the uniqueness ofelliptic solutions of the Cauchy problem for general
linear, quasi-linear, and for certain types of non-linear partial diffe
rential equations of second order. As an example of such a non
linear equation let us consider

r. {d-u{x)) r / N du{x) dM(a;)'l
'̂ "1 5?y!= '• h -35^J-

The ellipticity of a solution n(x) means here essentially that u(cc) is

aconvex or concave function; more precisely that the matrix i ^

• i, !•

•. 'g' -i .u.

dx' dx')

is positive or negative definite for each a; in D. One proves here the
following statement :

If two such elliptic solutions u{cc) and c(a;) are of class C'* in D and

have the same Cauchy data u=• cand ^ ®portion ofthe boun
dary of ^ of class C'* then u{x) = v{x) everywhere in D.

•4
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The function F is supposed here continuous in all its arguments
and lipschitzian in all except possibly the first.

Remark 3. — Our main theorem can be immediately extended to
systems (wi, . . of mfunctions satisfying a system of minequa
lities of the form

dui

dju' • i |- (A: . . in).

With an operator A(the same for each n,.) of the same type as before.
As corollary we obtain a unique continuation theorem for har-

momc exterior differential iovms . .dx'" on a Riemannian
manifold \tith ametric g;^dx'dx^ since in each system of local coordi
nates the components satisfy the equations

id,— Oh, ,
~r V/o o'' 1 k, ,.c/^ if-'p h-")p

where LJ; are all linear differential operators of orders ^ 1.
Addendum - Quite recently Dr. H. O. Cordes, sent us his manus

cript where behoves the general theorem. His proof also relies on
an extension of Heinz'inequality and in order to obtain it he also uses
the basic idea of multiplying the original operator Aby a correcting
fac or. The form of the proof is however quite different from ours
and It allows him to weaken the restriction on ao from C-' to It
seems probable that a more thorough analysis of the dependence
of ^ on the no ^ dependence
of our bounds on third derivatives of aO and thus veaken the restric
tion on no ,0 C ' Any further weakening of these restrictions
would seem to imply radical changes in the proof since we would
loose then the local uniqueness ofgeodesies.
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