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A unique continuation theorem for solutions of elliptic
partial differential equations or inequalities of second order;

Br N. ARONSZAJN (V).

1. A measurable function « defined in a domain D of the euclidean

n-space &" is said to have a zero of order « >o0 at x,€D in the
p-mean (1 = p = )if

j i 17 |p ({.:3_-' — O (.,,p:t—l-u ).
le—ay | <r

If p < g, a zero in g-mean is a fortiori a zero in p-mean. The usual
definition of a zero of order «[i. e. that except on a set of
measure o | u(z)| = O(|x — z,|*) for & - 2, | corresponds to a zero
in p-mean for p= w. The zero is said to be of infinite order if it is
of order « for all z > o. ;

Consider solutions u of an inequality of the following kind

(1.1) | Au(a) MW 0€:}I(!';:;)12~}—|n(.:1‘)['-' :

Here A denotes a linear elliptic differential operator of second order,
in general with variable coefficients, and M a positive constant.

Our purpose in this Note is to prove the following theorem for
solutions of (1.1).

Tueorem. — If w is a solution of (1.1) in a domain D) and if at some

(*) Paper written under contract with Office of Naval Research Nr. 58.30k.
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point z, in D u has a zero of infinite order in the 1-mean, then u vanishes

z'dent:'ca{!y.

We state below the restrictions on A and « under which we prove

the theorem. '

1° The principal part of A, a” T:% should have coelficients «" of
class C*Y (i.-e. of class C* and with second derivatives lipschitzian),
all other coefficients of A being uniformly bounded. We can and
will suppose (because of ellipticity) that {a} is a positive definite
matrix everywhere in D.

2° u is in the neighborhood of every point of D, the restriction of a
potential of order 2 of an L*-function, the potential vanishing outside
of a compact in &". Essentially, this is equivalent to the fact that
locally u has strong L*-derivatives of first and second order (*). With
this general assumption on «, (1.1) will be assumed to be true only
almost everywhere in D.

The validity of the theorem for domains of & implies, obviously,
its validity on a differentiable manifold. @” is then a contravariant
tensor and in view of 1° we shall have to assume that the manifold is
at least of class G0,

For the case of two dimensions, the theorem is essentialy due to
T. Carleman [1]. It was proved recently for n-dimensions by
C. Muller [2] and E. Heinz | 3], the operator A being the ordinary
laplacian, and the function n being subject to somehow stronger
restrictions. C. Muller considered, essentially, the inequalities of
type (1.1) with right hand side reduced to M | u(«)|?, whereas Heinz
considered them in the form given above.  Both authors made
extensive use of spherical harmonics in their proofs (?).

Heinz reduces the proof to the following inequality

(1.2) ('f'zf.‘ ) fz |72%| A |2dze ;L".[.| . ]z‘l-“ }: 7 Beo |w]* | da.
Ll ="r Jarl<<r "

() With the fiest definition # is much more precisely delined; its derivatives
of the first two orders exist in the ordinary sense and are locally L=,

(7) Recently the author was informed that P. Lax oblained a proof for the
laplacian without the use of spherical harmonies,
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where =1, 2 > 0, uis a function of class C* vanishing outside of a
compact conlained in 0 < || < r, and ¢ is a constant depending only
on the dimension n.

Our proof is based on an inequality similarto (1. 2) for an arbitrary
operalor A salisfying our restrictions. The next [ew sections will be
taken up with the statement and proof of the inequality.  (VWhen A
is the ordinary laplacian our line of proof becomes much simpler
and in fact is shorter than the original proof of Heinz. )

2. We may and shall assume that the domain D is bounded and
will consider it as a differentiable manifold of class C*.  Consider.

there first the metric
ds* — q;deidel (V)

where the matrix | @;;} is the inverse of | " |.

For a fixed point @, €D and variable point xe€ D) denote by r the
geodesic distance from 2, to 2. With a constant v Lo be defined in
the next section we shall introduce new tensors

(2:1) i = ™ i fij=e "y,

and the corresponding Laplace-Beltrami (L. B.) operator

~ T d i o) ~ ~
9., e s Y o e chere  fa=—=Del | ;.
S ; /7 0 V4 gar WL Sl
[n the corresponding metric d5*=a;;d2’'dx’ let 7 be the new
geodesic distance between 2, and . It is clear that in both
metrics ds* and d5* the geodesic lines issued from 2, are the same and

the distances » and 7 are related as follows

(2.3) == [ e ol

Denote by S'h(:r-u) the geodesic sphere 7#< /A in the metric 5.
Our basic inequality can be written as follows

. L ! . .

(2.4) uh-'/ ru|RulryEdes [ 7 (v; du du

ot |
. e i dad
By L) - e

+ | |? | Vade.

(*) From now on the usual convention will be applied that repeated indices
imply summation,
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Here « is a function of class C* vanishing outside of a compact
contained in Sh(-rn) — { @, |, zany positive constant, h=r'. ¢ andec
are constants independent on « and «, depending only on the tensor a”/
and the position of z, in D.

In order to describe more specifically the dependence of the
contants v, r, and ¢ on the tensor ¢ and the position of x,, denote
by 2 R the euclidean distance from 2, to the boundary oD of D; by 0
the upper bound of the eigenvalues of the matrices { @7} and | a;; | for
all points @ in the sphere |2 — 2, =~ R. Furthermore, let B. be the
upper bound of absolute values of all derivatives of order =3 of the

a’ in the sphere | —xy| ZR—+z and B=LhmB.. The third
e o

derivatives may exist only almost everywhere but will Kave a finite
essential bound since the sécond derivatives are lipschizian. The
possible discontinuities of third deriuatives are the reason for
choosing B = B. instead of B — B,. - ' We put

(2459 l\:max(;i, 0, B, .u.).

The constants v, ¢, 7/, will then be determined as positive conti-
nuous functions of T', the first two increasing, the last decreasing.

In addition ' will be determined so that the geodesic sphere 53 (24) be
contained in the euclidean sphere |2 —,|<R. We do not give
here an exact determination of these functions since it is sufficient for
our purposes to establish their existence without having the exact
form. ' -

We now remark that if formula (2.4) is established for tensors a'/
of class C” with the constants v, ¢, and 7/, satisfying the above speci-
[ication.s, then it is also valid for tensors of class C**. In fact, by
regularization of @/ one obtains a sequence of tensors &'/ of class C”
whose constants I' will converge to the constant I'of @//. In addition,
the o'/ and their derivatives of orders — 2 will converge uniformly to
the @/ and their corresponding derivatives. It follows thatin (2.4)
every term depending on the tensor @7 is a uniform limit of the
corresponding terms for the tensors «/ and hence the validity of the
formula for 2% implies its validity for @/. This fact will allow us in
the next sections to restrict ourselves to @'/ of class G,
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5. Now let ¢¥ be a positive definite tensor of class C*in D.  Fora
neighborhood of @, we introduce the classical geodesic coordinate
patch. To this effect consider & as the tangential space of our
manifold D at @,. The points (or vectors) in the tangential space
will be denoted by £ and its origin will be chosen at 2. The norm
in this space is given by the metric tensor a;; at the point z, and by a
suitable choice of coordinates £ we can make it into a euclidean
norm |£|*=X(&). To a point £ in this tangential space we assign.a
point & in D as follows : Take the geodesic line (in the metric
ds* = a;;da’ d') issued from 2, and tangent to the vectorz.© On this
geodesic line let 2 be the point at geodesic distance | E|froma,. The
construction will be made only for |£| = 7", where 7 is chosen small
enough so that any two differents geodesics issued from a, and of
length 7’ have no points in common -except and so tha't the
geodesic sphere S,.(,) lies completely in theinterior of the eu(?hdean
sphere | — x,| < R. By checking the classical proofs of existence
and local uniqueness of geodesic lines it is easy to show that »” can be
chosen to depend only on I and to form a continuous decreasing
function of I'.  The correspondence Z —  is then a homeomorphism
of class C° transforming the sphere, 2. : [Z[<[7" onto S.(2,);

clearly, | 2| = the geodesic distance r from z, to .
We now choose a finite number of coordinate patches covering the
hypersurface oX, : |£| =1, with local coordinates ¢!, ..., "', These

coordinate patches will be fixed once and for all independently of the
tensor @/ (but depending, obviously, on the dimension n). In this
way we obtain the geodesic polar coordinates ¢', ..., ¢!, 7 in the
geodcsic Sl)llel"e S;---(xn)- ]_“.‘0]_' lhe lTICLl‘iC Ht&'u we now lii"l\'(_'. two
expressions
(3.1) ds* = gij (f'z_i =udr*—=riy; ditdil,
where

dxt da!

il = WL G 7

The y;; form a metric tensor on the hypersurface 95, (2,) for every

fixed » >o0. We wrile

s wf Y — e =
T:lh.‘l{‘-;;}. L=ty =
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By checking on the correspondence ¢ — 2 and the expression of g;;
2 ; ; ot .
and v;; in terms of the tensor a;;, the derivatives Tl‘ and the transfor-
200

mation of the cartesian coordinates £ into polar coordinates ¢, r, we
obtain easily that there exists a positive constanl B’ depending only
on I, continuous and increasing as function of I'; such that the
eigenvalues of the matrices {v;;| and {y¥| as well as the values of ¥
1 . — .
and - on all hypersurfaces 0S,(,) for o < r.= " are bounded by B/,
oy dy¥ iy dy . dy

and such that all the partial derivatives Pt ol St U
0ty 0y

9= goop are bounded in absolute value by B’. Furthermore, if

r—o, v/ converges uniformly considered as a tensor on 09X,
(vyi; converges to the metric tensor induced on 0, by the euclidean
metric).

2 4 : dgij ( oY
From the well known property that —’{-—:—) =o0 we gel —— —+0
J e = dr
: ay
and 55— 0 when 7 — o and hence
: il 0y
(3.2) | ~Wpr, = Bl
ar |=" ar| =i
. avii . 5 g <
Itisclear that d'!_ 1s a conlravariant lensor on Lhe hypcrsurhlce ()b,-(.;t:“).

The reason for changing the metric ds* into d5* = e¢~*""ds* is Lo make
the last tensor positive definite for o< r—1r" (*). The geodesic
polar coordinates for d5* are abtained from those for ds* only by the
change of variable r into 7 given by (2.3). The expression of d5* in
terms of its polar coordinates is therefore

A = e = pr e 2 v dU dU = dF? 4+ T2 dt! di,

(%) The author is indebted to Professor k. T. Smith for raising the conjecture
that such a change of metric may achieve the desired rvesult.  The geometric
significance of the change is that the new metrie has a positive curvature in the
neighborhood of 2. If the metric os* already had a non-negalive curvature we
would not have to make the change. This is actually what happens in the case
treated by Heinz where ds* is the ordinary euclidean metric.

-
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It follows that
Y= f—‘:.;.“—”'*.” and, hence, G e— 2 :__ i,

i T e T el gt 1 e
{}—‘T = ——] =4 +2=2 — — — a2vr Y.
{)1‘ 72 J f)f' 7 r ) -

If ¢ is any covariant tensor on dS,(x,) we get from (3.2) and the
properties of the constant B’ that

n—1 N B
el f : A, -
‘%‘"‘i il I = “"”(.‘l |4 l) Z B2 (0 — )i, Z BT Py
or

P e 1 ol ii
l-z ( —— = =23 J") — B2, v L)
r r ]

. Wechoosev=DB"T. Sinceby (2.3)#< rand since e~ —1>—vr"
the square bracket in the last inequality is

and

> [2(—vr—+2vr)— BT r] = B2

; 3 3 x JdVI . . S0
Hence with this choice of v the tensor =— is positive definite on

vy
all ()S";‘.‘( a,) lor

o

By a similar argument one verifies that the above choice of the

. . dloz \':-‘;
x Ly A LT b 0.
constant v implies — = <

It is immediately seen that for the metric and tensors with ~ the
same developments, properties, and evaluations hold as for those

. 7 : ~r ¥
without ~ except that the constant 7" should be 1‘(_-placud by # and B
by a constant B’ which is easily determined and which 1s again a
continuous increasing function of I'.

4. We come now to the proof of the basic inequality (2. 4)- Since,
in the present section we deal only with the operators and tensors
with ~ and corresponding polar coordinates, it will simplify ll}e
notation to skip the ~. The B-L operator A in the polar geodesic

Journ. de Math., tome XXXVI. — Fasc. 3, 1957, 31
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coordinates now has the following form

Pu n—1 2 log /v \ du 1 s fr=r
. Au——— = o 2. IR o nr meld [ L
(%.1) h=cnrs ( = O ) e Uy d{."\/i 77

It is important to notice that \/y is the density corresponding to the
metric v;; dt' dt/ on each hypersurface dS,(2,) and hence depends on

the choice of local coordinates ¢, dlog 'y

- - d;.

function defined on 03,(z,) and in view of (3.2) 1s bounded
|8 i - .

by ;B"r. The integral in the left member of the inequality (2.4)

can now be written in the form

J’i
L o il : i S
(e.2) L —f f r=2%| A |2 r=A\/~ dr dt.

’}\—1

But the expression is a

Thl.S integral \\:ill be changed as follows. We introduce a new
x-a;mblﬁ: by putting r=¢—+. The function u = u(t, r) becomes now
a tunction ¢(¢, o) = u(t, e*), t€0X, and 1L<e<®, y=—Ilog h.
AT It 7 iy 1

We next put f—=o — 5 +2and v=e%w. Henceforward we will

denc_ne demva!,lves with respect to ¢ by primes. After these transfor-
mations, our integral becomes

v

s

(+.3) [;,‘——f f\‘ [ —(r—24 25— ) W
i Wigd,

TPRE+n—2—p)wa A w2y de dp.

Here A, denotes the B-L oper

alor on the hypersurface oS, (2
for r —=e* with r i ()

espect lo the metric v, didr/, i. e. the opera-

G Fraay) 32
LoD —= == AL 2 1 . dlogy/y . :
5 Y Y YY 55 1 denotes the expression ——-t;\ L. In view of our
L} J

e L 2 - dlogy/y A laen/
previous evaluation for o, — and the fact that '%‘-—-— < o'we obtain
(fe.4)
1[.1e calculations will be simplified if instead of the integral I, we
consider _

k5) B=/[ Hie e et L
h.5 p— " R—2 4 2B BBt —2)w = A2
( iy ]/ ‘[\‘| ( > AR W LB+ —a)w - Ay w2 \/fy de dp.

=y
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It is immediately seen that

(h.6) R f f pi W' — Bw |2y dedp.
= :( N

«
oy

Our hypotheses concerning the function  imply that the function w
is of class C* and vanishes for ¢ outside of a finite interval completely
interior to the range y < ¢ <. We transform the inte.gral. I, by
developing the expression | ... |* and using partial integration 1n two
ways : one, integration with respect to g for fixed ¢ and se_condly,
integration for fixed ¢ over the hypersurface 0X,. This last integra-

tion by parts uses the well known formula that if <% is a contravariant
tensor on 0%,, and o and & are two functions on oX,, then

¢ IS s K F *.f){_.'; ();l:« -
f o:;- #\/‘;’T";}j\'}"-“:_ [\‘ o W\f‘. dt.

Combining these two procedures, one transforms the integral I} into
the following form

S [ [ B
Sy o,

4 7y dw dw
T — a4+ 2)(YY) =57 5
(28 +n L)) 57 a7

s SRE L L5 TR
A \;\p W Lfﬂ(ﬁ +n—2)+ (5 + 72 ) - ! “‘l : Vydedp

2

el T i

LML o

aylf e ——
20 9 §

+f’°f {(ig+if_“_"')-_:.nc
R Z

sy

s N o
WY ==
_ Mgtk (ol

ne 7 o\ i O dw
— [(y))'+ ()Y 55 5

4 [3(3 4 — 3) Pp— E-—_—))“ p‘-‘—l | w |2 ) Vv dt do

2

=Rt 100 I
In'the integral I} all the terms are positive since > o,

g_lf_’,_:._.;;—gz'_zl—i—‘_’.}'.!
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nd — (y¥) = AL e“’ is a positive e definite matrix. Itiseasy to prove

also that the 1ntegml I} is majorated as follows
(fe.8) [ 137 | = Be- % 152,

where B" is again a constant depending ounly on I, continuously and
increasingly. Similarly, for the integral in (4.0), we have

(h.9) f [ p ! — G | \/"a’fr{‘o ZBe L1,

..."‘

These facts are established by using the properties of the bound B’
and also the following formulas and evaluations : formulas (3.2)

(lnd ({l /)

P =N 0% log /v ) log\/~ a2yl ol
= (log /v ) = CrIOBVY 5 TIOEMT iyt = L gsp 4 TV p
(log \7) BV 104 OBV g, (pl) = et e,
dp.  J*log Vv :' 3
di —  Todor °

i ., =2\ i _}r)Jdu = :
‘[; f\- (\‘-J. = )_a[’u'l‘\ W;‘F.!\/ldhfﬁ

[/

1
2 n—= du. d I
lo Bty A (sr32 o
|
_‘_['f r)ut . f}n dw Eotiads
L Ja K angn) Y op gpY VR

. r)u ' il X
: dﬂ A=

Finally, we use the evalution

I o | A e %L 2 :
g [ ¢F|wtyydp =1 [-:*f |o'2vyde  (z>o0).
& 7

7
A similar formula is vali + w replaced by 2% i
ormula is valid for « replaced by gi - It follows now

A e sy ] g
from (4.6), (4.8) and (4.9) that 1”‘*:3_"’Lﬁgni—4_—l-<t.

(b.11) L s l;":fj i By o [P
q 4./, ”:,JL o > = w' |

N !,f}\\ Jdw')
e e v ot o,

diE et ',‘
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We choose »'= 1;15—1: and turn to the second member of the
ulcquallt) (2.4). As in the first member we replace the coordi-
nates 2 by geodesic polar coordinates, then introduce the variable
p(r=pe*) ’md also the function w. The integral becomes

) [T [ (1w p@p—ler

¥ (3'; 3:_) 4 e | w2 } [ dt dp.

An argument similar to the one which led to the evaluations (4.8)
and (4.9) [(4.10) being used with = =2 instead of == 1] gives for
the integral (4.12) anupperbound B e ** 1;* = B” 2 I;*, B" depen-
ding again only on I, continuously and increasingly. Together
with (4.11) this gives (2.4) with the constant e = 4 B".

5. The remaining part of the proof of the theorem is relatively
Slmple and we indicate it briefly.

If a function u salisfies the conditions of the theorem we notice first
that obviously for some constant M’ (depending only on M and I’
continuously and increasingly) we have

d ) du(r) - 5 . !
.f:)(’:* t{)“_ .—lu{.:;)]-“\ L-'FEE'-‘;-[J.",]J.

5.1) | Ru(a )|/\r[

4 ; Fa .
Tiatrs = ,]—;min (,.x} \_f' . r'II\;_l' ) In (2.4) take ~h=23r,. Consider a

function ¢ of class C” vanishing outside of 53,_0(3:‘,} and=1 1n S(.rn)
Put u;,=9u. We first prove that the inequality (2.4) is valid with
the function u, replacing u.

We note first that for each fixed @ > o the integrals in (2.4) are
finite. To prove this, it is enough in view of (5.1), to show that u,

as well as all derivatives = d 2% have zeros of infinite order at &, in the
o-mean. To prove this last fact we remark that by Sobolev’s theo-
rem [ 4] the second derivatives of #, being L*, #is a function of class L
with some ¢ > 2. The Holder inequality then shows that «, having
a zero of infinite order in 1-mean implies that it has such a zero in
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2-mean. We then apply the identity

b CJ : 5
fﬁlaﬁ d.r:——fvﬁﬁd:::
1
(valid for ¢ vanishing outside of a compact), to the function

p=1 (1———-?;__- xu) iy,

$(®) is a function of class G vanishing for |x|>1, =1

for|a:|é%ando<¢(a:)<1 for§<|;c|<1;o<a<1. Thus we

obtain

A

ot = (f |, ? d:r) (Co+ Cret 4+ Coe™®),
|e—agl< N m—arg| €

Here :

1
5.

1hm

where C,, Ci, i Cs, depend on u, but not on ¢. This proves our sta-

tement about Qi |
dak

For the above function ¢, put
K:j- b(z) da and L. (= :—I—T(E .
o Ye(2) P il s
Then by c‘onvoluting b with the function equal to , for |x—a2, | =28
and = o for |z — @, | < 2 we obtain a function uy . satisfying, for

sufficiently small g, the requirements of inequality (2.4), and such

tha integrals in (& ing i
at the integrals in (2.4) foru, . converge to the corresponding inte-
grals for «, when z — o.

The inequality (2.4) for u, and h—3r, together with (5.1) and
the properties : u = y, for e S(.;,‘,) and ch* M’ = 13 give, by an argu-

ment fllle essentially to T. Carleman (used in the form below by
E. Heinz), that for all o> o.

gl o Ot On . 5. N
'.[;‘;.’“!‘ -Z[Q: f T D -} [ H.i-il \/”;_( dr = i 0o T I:aug% 3:’;1‘; L. 3 I w, !z] \/a dr

which implies that « = o0 in S,.(#). Sincer,isa positive continuous
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and decreasing function of T" which is uniformly bounded for 2, in
any domain D’ completely interior to D, an obvious argument proves
that « =o0 in D.

Remark 1. — For any 0 with 0.=0< 2, we can obtain, instead
of (2.4), the inequality

4 ch2-0 ., ~ i P ot i A T R R N [P
—(-}r—l—”—)‘_ f gl I Au | (1".:-:_12[ F| P0Gy Bt o + 702w | Vade.
g — 02 fo ok | ¢ el da
Splag) LA | - =

The argument leading to this inequality is exactly the same as
for (2.4); but in evaluating the second member we use formula (4.10)
with T =2 — 0 iustead of t=2. The above inequality allows us to
obtain the unique continuation theorem when (1.1)is replaced by an
inequality with a singularity at @,

du(x)
dat

Au(2) =M ‘ 'z — g--“)_:

l

It is interesting to notice that if we consider solutions of the last ine-
quality with 0> 2, simple counter-examples show that the unique
continuation theorem is no longer valid.

+ | — 2 |2 | u(z) fi}.

Remark 2. — We mention that our theorem allows us to establish
the uniqueness of elliptic solutions of the Cauchy problem for general
linear, quasi-linear, and for certain types of non-linear partial diffe-
rential equations of second order. As an example of such a non-
linear equation let us consider
[0*u(x)|

. due () ! du(x) )
?_ dat da/ j i

Ye LA
Det ot dan

Floa, wle),
The ellipticity of a solution «(x) means here essentially that u(x) is
du(x)|
dat duel |
is positive or negative definite for each @ in D. One proves here the
following statement :

- If two such elliptic solutions u(x) and v(x) are of class C** in D and

de

du :
2 ¥ L fr e ] S 9 ] ) un-
have the same Cauchy data u= and dn — o9y, on a portion of the bo

daryof D of class C** then u(x) = ¢(x) everywhere in D.

a convex or concave function ; more precisely that the matrix %
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The function I is supposed here continuous in all its arguments
and lipschitzian in all except possibly the fIrst.
Remark 3. — Our main theorem can be immediately extended to

systems (u,, ..., u,) of m functions satisfying a system of m inequa-
lities of the form

: f_“ 11 dug|* __
|.-\u,..[‘-_4_M}-r<2‘ Z)T‘; —+ cu|-> Ch=1), soinm),

=1 i=1

with an operator A (the same for each u) of the same type as before.

As corollary we obtain a unique continuation theorem for har-
monic exterior differential forms .., dx"...dx" on a Riemannian
manifold with a metric gijdx' dx/ since in each system of local coordi-
nates the components satisfy the equations

ISl 2 e,
\f,L-',; Ok VES DTl = s

where Li:j_'jﬁ-:; are all linear differential operators of orders — 1.

Addendum. — Quite recently Dr. H. O. Cordes, sent us his manus-
cript where he proves the general theorem. His proof also relies on
an extension of Heinz’ inequality and in order to obtain it he also uses
the basic idea of multiplying the original operator A by a correcting
factor. The form of the proof is however quite different from ours
and it allows him to weaken the restriction on a4/ from C*t 10 C2. It
seems probable that a more thorough analysis of the dependence
of ‘ih! on the @ would make it possible to get rid of the dependence

of our bounds on third derivatives of «
tion on a to Ctt,

7 and thus weaken the restric-
Any further weakening of these restrictions
would seem to imply radical changes in the proof since we would
loose then the local uniqueness of geodesics.
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