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In order to prove Us A 0 we define

a measure on E 1 m

Recall is in jet ju in for
me on

Define

u is in rigs ri

Then

Ezu I rest era 1

u can be extended to a Borel measure on

Σ

Recall Natural projection TI I 11

Since I satisfies SSP TI is a continuous

bijection
Define the push forward measure

A u T A



Thus for It Ein
u A u i rig rin

The SSP implies that

f min dist A i A it 0

Then for It In

min dist A j
A in k j prie in 4

Now it suffices to show 7C 0 s t

V Bex.rs Crs

for all EA and r small enough

Fix E A ref and let T x

Let n be such that

f ri rin
r rig rim f

A implies

B x r n A Bex r ft his in l

3 3



Thus is
IT_ is

Bex r

v A is in i

rig ri

in ri rinse

ermin
s rs


