
Now that we've proven
that

a gap between similarity dimension

implies super exponential condensation

Hochmen's them would imply a

resolution to the exact overlap

conjeiture if super exponential

condensation implies exact overlap

We have shown that this holds

when the contraction ratios and translations

are ration So it stands to reason that

this is possible In fact Hochmen

mentions in his paper
feet this may be

true

Unfortunately it is not true This

is shown by Baring and Kien mink

then separately by Baker We will

prove the Bairey Kiennik result
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This ends up being close to the

projection entropy of Feng and Hu

We can intuit that fact from the

following propositin

Prof If I da da idm is a homogeneous

tuple of contractive similitudes acting on the

real line such that r with Octria tm
is the common contraction ratio of the

meps di A CIR is the associated self similar

set and n is the natural measure on then

dimpled sim dim I T.gl p.y

for all Or r v1

This proposition isn't necessary for the

construction but it is a nice application

of Hochman's entropy computations



Sketch of proof of Barany Kienmaik
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Further define the map

β i J d d

for i j t 1 2,3

Then
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Finally proj IR 2 03 R

be a projection defined by

projlxe.vn
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Pr is not necessarily defined on all of

I but we 1am make some

smell changes by fixing some smellamountof

letters of each word

Pr extends continuously to a function
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So now Pr is a family
of projections



Now it suffices to find uniountably
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We continue this process iteratively

and get a fractal set at

Hausdorff dimension Zero



Let's now prove the interesting proposition

Prof If I da da idm is a homogeneous

tuple of contractive similitudes acting on the

real line such that r with Octria tm
is the common contraction ratio of the

meps di A CIR is the associated self similar

set and n is the natural measure on then
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