Now that we've proven that a gap between simplarity dimension super-exponential condensation. implies Hochmen's thun would imply a resolution to the exact overlap conjecture if super-exponentful Condensation implies exact everlap. We have shown that this holds when the contraction ratios and translating are ration. So it stands to reason that this is possible. In fact, Hockmen mentions in his paper teet this may be

Unfortunately, it he not true. This is shown by Barany and Käennäki then separately by Baker. We will prese the Barany-Käennäki vesult.

Setup For Barreny - Kärnniki

A perametrized Family of maps.

Let
$$r.6(0, \frac{1}{5})$$
 $t \in (0, \frac{r}{1-r})$

Define $1r.t.$

Define
$$\phi_{2}^{r,t}(x) = rx + t$$

$$\phi_{3}^{r,t}(x) = rx + t$$

$$\phi_{3}^{r,t}(x) = rx+1$$
 $\phi_{3}^{r,t}([0,1])$
 $\phi_{3}^{r,t}([0,1])$

- · 4,5,+(00(A,+)) (42,+(00(A,+)) + 4
 - φ2,+ (co(Λ-,+)) 1 φ3,+(co(Λ-,+)) = φ
 - sin-din (\(\omega_{r,+} \) = log(3)/(03(1)) < 1.

Parameter Sets

• Exact overlapping set
$$\Xi = \{(r,t) \mid \phi_{i}^{r,t} = \phi_{i}^{r,t} \quad \text{for } i,j \in \Sigma^{*}\}$$

$$i \neq j$$

tiven a monotone decreess sequence of positive real numbers, $y = (\eta_K)_{K=1}$

Thu (Báriny-Käenmäki 20)

If him of leg (n) = -a

home in leg (n) = -a

der EyiE is un countable

Tools for the proces

Average Exponential Condensation

For any IFS, \(\mathbb{E} = (\ph_2, \ph_2, ..., \ph_m) \)

 $X(y) = \lim_{n \to \infty} \frac{1}{n} \sum_{i \in \Sigma_n} \frac{1}{m^n} \log(\#\{i \in \Sigma_n^i | |d_i(0) - d_i(0)| \leq y^n\})$

X(8) is essentially computing the ang
Box-country dimension of the Sibers
of the natural projection over all
scales.

This ends up being close to the projection entropy of Feng and Hu. We can intuit that fact from the following proposition.

Propi II I= (42, 42, ---, 4m) is a homogeness type of contractive similitudes acting on the real line such test r with Ochret in is the common contraction ratio of the maps, \$\phi_i\$, \$\Delta \color \text{the associated self-similar set, and in it the natural measure on \$\pi\$, then

 $\dim_{\mathcal{K}}(u) = \min_{\mathbf{w} \in \mathcal{M}} = \frac{\mathbf{x}(\mathbf{y})}{\log(|\mathbf{r}|^{-1})}$

for all OCTE Irl.

This proposition isnot necessary for the construction, but it is a nice application of Hochman's entropy computations.

Sketch of Proof of Bensing-Keienmeiker

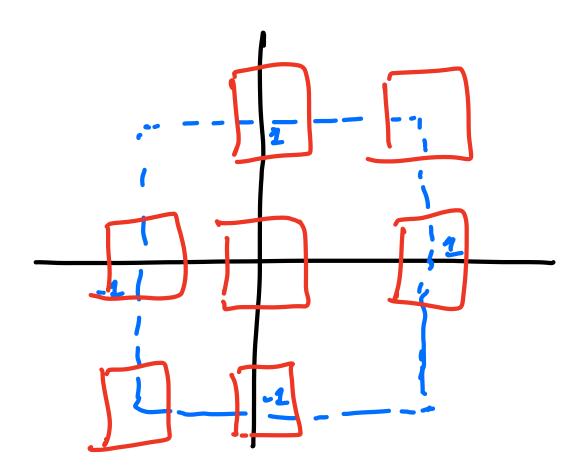
For
$$j, i \in \{1, 2, 3\}$$
,

Let $S_i = \{2, \dots, i\}$

Then for $i \in \mathbb{Z}_m$, $i = (i_2, \dots, i_n)$
 $A_i^{r,t}(c) = \sum_{n=1}^{n} (S_{i_n}^3 + t S_{i_n}^2)^{k-1}$

$$| \phi_{i}^{r,t}(\omega) - \phi_{i}^{r,t}(\omega) | \leq \frac{\sum_{n=1}^{\infty} (S_{in}^{2} - S_{in}^{2})^{n-1}}{\sum_{n=1}^{\infty} (S_{in}^{2} - S_{in}^{2})^{n-1}} | \leq 2\varepsilon$$
And

$$\left| \frac{\sum_{n=1}^{\infty} (S_{in}^{2} - S_{in}^{2})^{n-1}}{\sum_{n=1}^{\infty} (S_{in}^{2} - S_{in}^{2})^{n-1}} \right| < \epsilon \Rightarrow \left| \phi_{i}^{*}(s) - \phi_{i}^{*}(s) \right| < 2\epsilon.$$



Define an IFS

where $L = \{(0,0), (-1,0), (1,0), (0,-1), (0,1)\}$

md

and \(\(\(\tau_2, \(\dag{\lambda}_2 \) \(\tau_2, \(\dag{\lambda}_2 \) \).

Further define the map

$$\beta(i,j) = (5_i^3 - 5_i^3, 5_i^2 - 5_j^2)$$

Sor $i,j \in \{1,2,3\}$.

Then

Now for each pair, i, j & I'n

we can write

$$(\psi_{\vec{p}})(i,j) := \psi_{(\vec{p}(i,j,i))}^{r} (\psi_{(i,j,i)}^{r})^{r}$$

the ordered compositions

the ordered compositions

(P(in,jul))

$$= \left(\frac{\sum_{k=1}^{n} (J_{ik}^{3} - J_{ik}^{3}) r^{n-1}}{\sum_{k=1}^{n} (J_{ik}^{2} - J_{ik}^{2}) r^{n-1}} \right)$$

Finelly, proj: 122-Exz=03 > 12 be a "projection" defined by

 $proj (x_2, x_2) = \frac{x_2}{x_2}$

For i, je In, de line

Pr(1,4) := proj (4/(1,41)

P": ZI* × ZI* > IR.

Pris not necessarily defined on all of $\Sigma_1^{1} \times \Sigma_1^{1}$, beet we can make some small charges by firing some small amount of letters of each word.

 P_r extends continuously to a function $P_r: \Sigma I \times \Sigma I \to IR$.

So vou {Pr?r is a family of "prejections"

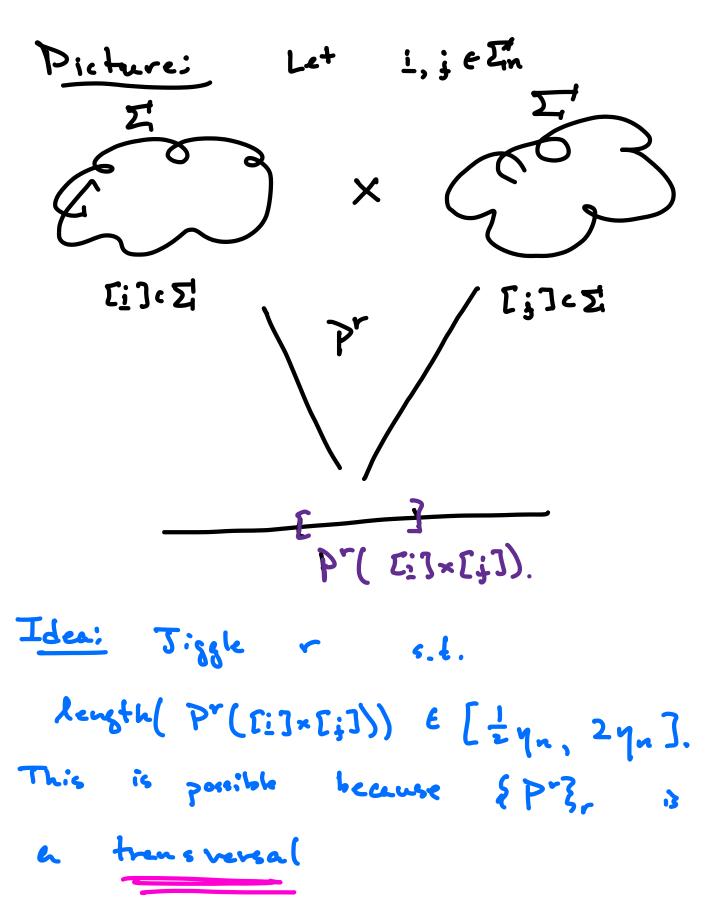
Now it suffices to find uncombably many t s.t $\exists i, j \in \Sigma!$ P'(i, j) = t and none importantly.

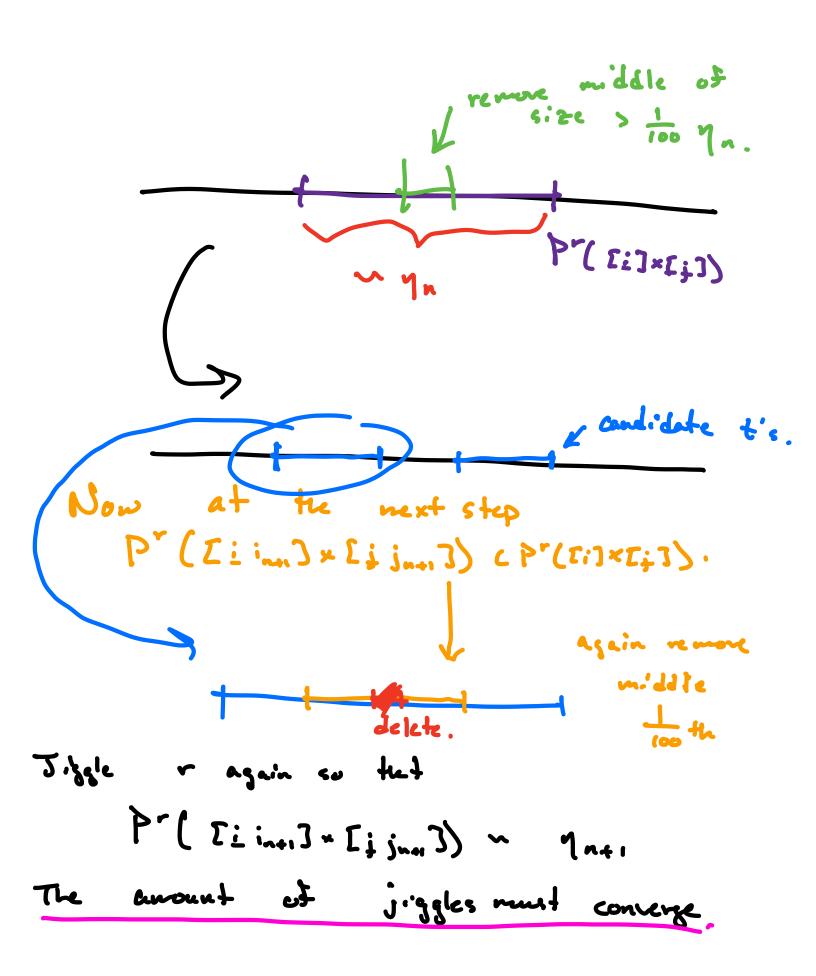
1 Pr(mi, mi)-+1 = n.

For some given (yn) == «. f. 1/20(nn) -> -00.

But for all i, i e Zi,

| P (m = ; m = j) - e | > 0.





We continue this precess iteratively and get a freetal set of Hausdorff dimension zero.

Let's now prove the intersetting proposition:

Propi II I= (42, 42, --, 4m) is a homogeness type of contractive similitudes acting on the real line such test or with October In is the common contraction ratio at the maps, φ;, Δ CITZ is the associated self-similar set, and in is the natural measure on x, then

> X(A) dingelul = sin-din(I) log (101").

06 85 ml. fer all

As before, let

J(n) := $\sum_{i \in \Sigma_{i}} P_{i} \delta_{i}(c)$ u is the natural measure,

 $= \frac{1}{n} \sum_{i \in \Sigma_n} \delta_{i(0)}$

Therefore,

There fore

= - lin
$$\frac{1}{n!} = \frac{1}{2!} \frac{1}{m!} \log_{2} \left(\frac{1}{2!} \left(\frac{1}{2$$

$$=\frac{-1}{n} \sum_{n} \frac{1}{n} \left[\cos \left(\frac{\pm \lambda_{1} \cdot \sin \left(\frac{1}{n} \cdot \cos \left($$

$$= \lim_{n \to \infty} \frac{1}{n!} \cdot \log(m^n) - \times (2^{-n}).$$

了。