now reduce Hochmanis Hochman's Than (original Form) Let I be a IFS on IR nt 72+, ve défine $\Delta_n := \min_{\alpha} \left\{ dist(\Lambda_i, \Lambda_i) \mid i \neq i, i, j \in \Sigma_n \right\}$ If dimp(A) < min(sin-dim(E),1) Hen - I log (An) made as Hochmals Thm: (Second Form) Let De be a IFS on IR, with $P = (r_1, ..., r_n)$. lim $\frac{H(v_p, Zh)}{n \log(2)}$ < min(sim-dim(Ξ), 1) - 1 log (An) mason 00

Let's now focus on reducing the them to own IFS with uniform contraction retios. The following is similar to what appeare in Hochnen's paper on well as a 2009 paper by Perex and Shuerkin Propi Let I= (diling be an IFS on IRd when d=2 -d=2 with attractor 1. Then for all e>0, there exists an IFS $\Psi = (\Psi_j)_{j=1}^k$ with attrector A such tet ner τως • ∃ee(1,-1) \ so3 s.t. ± ψ; = e ∀j. · sim-dim(里)> sim-dim(里)-E • X c V · For each j f & 1, ..., x} there exxt it [{1, ..., m}" s.t. 4; = 4;

Pf: We prove du de1 case In D-9'04, trey use the commutatively of rotations for d=2. In the d=1 case we can characterize & in the following way: each ies1,...,n3 31: E (-1,2) 63 , x; 6 112 e.f. 4; (x) = (; x +x; s= sin-dem (I) and ri=18:1 $\sum_{i=1}^{m} r_i^s = 1.$ Then

Let {e_1, ..., e_n} c R^m be the stendard backs of Rm.

Consider the random walk which starts at a and moves from x to ex with probability ris

XN= position of the render walk after N steps.

で(型)~~

v = (v2, ..., vm)

To each <u>i</u> £ {1, ..., m}^N

we cosociate a path in Zd,

P:: {0,1,..., N3 → Zd

where 7:(0)=0 and if ij=1 hen $P_{\underline{i}}(j) - P_{\underline{i}}(j-1) = e_{\underline{i}}.$ Since multiplication is commutation, for each i s.t. Piwler, φ: (x) = ex + =: $\varrho = \frac{m}{\prod_{j=1}^{m}} \varrho_{j}^{v_{j}}$ uherc 2 ; + 12. The probability test bi (K)=V is equal to 11 (r.s) " = TT r.sNr,s Thus, if My is the number of paths s.t. P:(N) = ~ , tere-

For some constant c.

-4 I = { 4! | P: (4)=v} 17 4; E T 3 =; & IR s.f. 中(x)= ex+2;. uniformly contracting, sin-dim (1) = log (Mv)
log (2/1/1) 101= Tr.viz Tr. Nr.

log(Mr) > (og(c) + (-10/2) log(N)+N = \frac{m}{12} ris log(1/ris)

[og(1/ris) > \frac{\text{Log(1/ris)}}{\text{Z log(1/ris)}}

N-00 S. We can now further reduce Hochum's ten:

Hochmals Thu: (Second Form)

Let De le a IFS on IR, with $P = \{r_1, \ldots, r_n^s\}$.

lim $\frac{H(\nu_p, 2h)}{n \log(2)}$ < min(sim-dim(Σ), 1)

Hen

- 1 log (An) maso 00

Hochmen's Thon (Third Form)

Let I be a uniformly contracting IFS on IR, with contraction record.

If lim H(vo, Xh) < min(log(m), 1)
n log(2)

then $\frac{-1}{n} \log (\Delta n) \xrightarrow{n \to \infty} \infty$.

Now we proceed with discretifateth:

For ne74, p= (P2, --, >m)

define

 $v^{(n)} := \sum_{\underline{i} \in \Sigma_{i}^{1} n} P_{\underline{i}} \cdot \int_{\Phi_{\underline{i}}(0)}$

Then $\gamma(n) \longrightarrow \gamma_p$ weakly and if $n' = n \frac{\log(\gamma/r)}{\log(2)}$

lin - H(vm, Dn) = lin - H(vp, Dn)

= dimm(vp).

If, for each $i \in \Sigma_{0}$, there is a $g \in D_{n'}$ s.t. $\varphi_{i}(o) \in g$ and $\varphi_{i}(o) \in g$ $\Rightarrow j = i$ then

 $\frac{1}{n!}H(v(n),b_{n'})=\frac{1}{n'\log(2)}\cdot\sum_{i\in\mathcal{I}_{n}}P_{i}\log(P_{i})$

=
$$\frac{\sum_{j=1}^{m} p_{j} \log(p_{j})}{n \log(1/n)}$$

= $sim-din(up)$.

There, For any m > n'if $\frac{1}{m} H(v^{(m)}, \mathcal{D}_m) \angle sim dim(m_p)$ implies, there exists $q \in D_m$ such that $\Phi_i(o), \Phi_i(o) \in q$ and $i \neq i$ $i, j \in \Sigma_m$. $\Rightarrow |\Phi_i(o) - \Phi_i(o)| < 2^{-m}$.

We've already shown text

IF dinge(vp) a sin-dim (up), then

lin L H(vp, Dn') = lin L H(vm, Dn')

noon n' H(vm, Dn')

< shu-dim (up)

So it suffices to prove the following final reformulation at

ttochuren's result:

Hochmen's Than [Find Form!

Let vp be a self-similar mersure on

The with uniform contraction ratios.

Let $v^{(n)} = \sum_{i \in \Sigma_n} p_i \int_{\{\phi_i(o)\}} . If$

dingelyp)<1, then

1:m - H (vm) Dgn/ Dn/) = 0

for all 9>1.

(Here H(v(m), Dgn' | Dn') = H(v(m), Dgn') - H(v(m), Dn')

Now we approach a proof of this theorem