Then: Let p=(P2,...,Pm), E=(42,...,6m)
be an IFS on 12. If up
on I is up= &P2,...,Pm3N and $V_p = T_{sup}, Then V_p is exact
dimensional and
<math display="block">dim_{K}(v_p) = \frac{h_p - (-\int log(u_i^a(l_i z^1)) du_p(i))}{\chi_r^a}$

Pfi

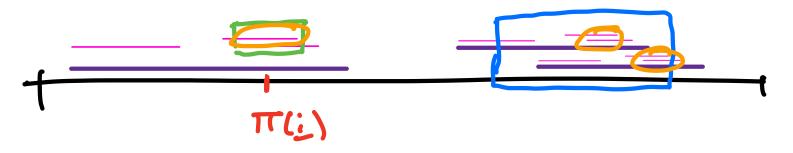
Assume for simplicity test $\exists r : t$. $\varphi: (x) = rx + x$: for all $i \in \{1, ..., m\}$. Then $\chi_r^p = -\log(r)$.

Also, assume 1 C B(0, 100).

For each it I and nEZ; we consider 3 subsets of I TTTT (B(TTG), r"))

TT - (B(TT (oil), , ---)

σ-1 TT-1 (B(T(σis), rn-1)



Note:

サー(な(かに), ~ ~~!)

 $= TT^{-1}(3(T(o^{(1)})), r^{n-(1)})$ for $l \in \{0, ..., n-1\}$.

re is shift incented and since μ (σ-1T-1 (B(π(σ<u>i</u>), rⁿ⁻¹))) = m(TT-1(B(TT(oi), rn-1)) Nos ve estimate the local dinensen log(v(B(x, m))) = log(~(TT-'(B(x, m)))) - log(u(TT'(B(TT(owi), rn-k-1))) + log(u(T''(s(T(v":), ro))))=0 = 2 log [M(TT-1(B(T(J+1))) M(TT-1(B(T(J+1))) Each term in the own gives some sense of the standard entropy and the amount of overlap In order to see this, we nake the following observation:

Now define

$$\omega_{n}(i) := \log \left(\frac{\omega(A(i) \cap \sigma' \pi^{-1}(B(\pi(\sigma_{i}), r^{n-1})))}{\omega(\sigma' \pi^{-1}(B(\pi(\sigma_{i}), r^{n-1})))} \right)$$

$$G_{n(j)} := log \left(\frac{\mu(p(j) \cap \pi^{-1}(B(\pi(j), r^{n})))}{\mu(\pi^{-1}(B(\pi(j), r^{n})))} \right)$$

Now

$$\frac{1}{n}\log(\nu(B(\pi(i),r^n)))$$

$$= \frac{1}{n} \sum_{k=0}^{N-1} W^{n-k}(\sigma^{k}i) - \frac{1}{n} \sum_{k=0}^{N-1} G^{n-k}(\sigma^{k}i)$$

We need the following proposition and come intertien from our example to thish tee proof:

Proposition Special Case of Maker's Ergodie Theorem

Let m be an ergodic o-inversant measure and let $(f_{k})_{k\in\mathbb{Z}_{+}} \subset L^{2}(\Sigma, n)$ be a requence which conveyes both in L^{2} and pointwise a.e. to $fe2^{2}(\Sigma, n)$ then for a.e. $j\in\Sigma$ lin $\frac{1}{N-1} f_{n-1}(\sigma f_{j}) = \int f(i) dn(i)$ $\lambda = 0$

We won't prove this proposition

Assuming this proposition, it suffices
to show that

lin while = \frac{m}{2} \tag{(i)log(m([17]))}

necall text For Wn,

Note tut

P(j) = [13] for some $1 \in \{1, ..., m\}$ and $\{m\}$ any $\{m\}$

m([[]] = m([[]) m(o-1(E)).

= log (u(Aj))

$$= \sum_{i=1}^{n} 2ci3(i) |og(m(EKJ))|$$

For Gn

μ(P(j) Λ π (B(π; , ~)))

μ(π (Β(π; , ~)))

= μ(β(μ; , ~))

μ(π (Β(π; , ~)))

κιίκωμη μα (P(j)) for ac j.

Another Notion of neverne dimension

het u be a prob. measure on a metric space, X, the recale entropy is defined as

H, (u) = - Slog (u(B(x, r))) re(dx)

The entropy dimension of us

dime (a) = $\lim_{n\to\infty} \frac{H_r(n)}{-\log r}$.

if the limit exists

Prop: (Fan, Lau, and Rao)

ess inf liminf log(alBlyrs))

a raso - log(r)

∠ lininf Hr(m)

-lag(m)

Z lineup Hr(m)

-log(r) E essemp

row

row log (~(86,4)) -log(r).

Obvious

Prop; If the limit exists

dine (a) = lim H(a, Da)

n log (2)

Straightforward.

Recall that $H(u, 7)_n = -\sum_{i} u(y_i) \log (u(y_i))$

where Br = {dyadic cubes }

Corollary to Props (Young '82)

If m is compactly supported and exact dimensional, then

dinelule lin H(u,b) = ding (u)

Note: Young proved this statement \$20 } Years before the propositions were proven) Corollary to Young 182 and Ferg-Hu 109.

Let $P = (P_2, ..., P_m)$ be a probability vector and let $E = (b_i)_{i=1}^m$ be an IES on IR. If $u_p = Sp_1, ..., p_m S^m$ and $v_p = TT_p \cdot u_p$ then $din_k(v_p) = \lim_{n \to \infty} \frac{H(v_p, D_n)}{n \log(2n)}$.

now reduce Hochmanis Hochman's Than (original Form) Let I be a IFS on IR nt 72+, ve défine $\Delta_n := \min_{\alpha} dist(\Lambda_i, \Lambda_i) \left[i \neq j, i, j \in \Sigma_n^{\alpha} \right]$ If dimp(A) < min(sin-dim(E),1) Hen - I log (An) mason so Hochmals Thm: (Second Form) Let De le a IFS on IR, with $P = (r_1, ..., r_n)$. lim $\frac{H(v_p, Zh)}{n \log(2)}$ < min(sim-dim(Ξ), 1) - 1 log (An) mason 00