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We've discussed that dyadic frequency

decompositions are the most natural

In order to study these ideas further

in a technically clean manner we

build the theory of Haar functions

on the internet 0,13
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Relationship between Hear functions

Isingular integrals
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I Let x
Iey

be an arbitrary

sequence of scalars such that IXI E C

for all IED Then the multiplier

operator defined on all functions FEL 0,13

with finite Haar expansion
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By interpolation and duality it suffices

to demonstrate the weak 21 bound
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