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Of course we have the classical

derivative for F ACIR which is local

files FEET
and we have the distributional
notion of differentiation for

F Ltwe defined by the identity
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is the natural higher derivative
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So differentiation in physical space

is equivalent to multiplying by 2Ti

is frequency space and vice versa

This is a nonlocal version of

differentiation because in order to

compute the Fourier transform we

need to use information for F

from its entire support
The

classical derivative only needs local

information

We
also have the normalized

derivative operator

DF ex Iii If x

DI 3 3F 3

L letF and supp F Cisco r
then

11 Duf 1122 R 1171122



Heiberg's Uncertainty Principle
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for all xo 30412 This inequality is sharp
the extremizers being
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Sharpness Exercise

IreinBenthiertheuren
If E F CIR are of finite

Lebesgue measure can there be a

nonzero FEL IR with supp f CE

and supp F CF

In order to answer this question
we need to further develop singular

integral theory
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Lee let Ty be finitely many
operators on some Hilbert space N

such that for some function 2 2 R

one has

11 T Tell 84 v1 11 T.tk 1 84 k

for any 11 j KEN let

Σ r e Aco

LEZ

Then

t A

PI Let T Ti then for

next

T Σ Tj.TK Ti TE Tint In



Observe that
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Then with
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Since T T is self adjoint
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