Problem Set 2

- Math 581A, Fall 2024
- 1. (Muscalu & Schlag, Problem 4.1) Compute the Fourier transform of the principal value of 1/x. In other words, determine

$$\lim_{\varepsilon \to 0} \int_{|x| > \varepsilon} e^{-2\pi i x \xi} \frac{dx}{x}$$

for every $\xi \in \mathbb{R}$. Conclude that (up to a normalizing constant) the Hilbert transform is an isometry on $L^2(\mathbb{R})$.

2. (Muscalu & Schlag, Problem 4.4) Prove that if $\operatorname{supp}(\hat{f}) \subset E \subset \mathbb{R}^d$, where E is measurable and f is Schwartz, say, prove that

$$||f||_q \le |E|^{1/p - 1/q} ||f||_F \quad \forall 1 \le p \le q \le \infty,$$

where |E| stands for the Lebesgue measure of E. Hint: First handle the case $q = \infty$, p = 2 using Plancherel and Cauchy-Schwarz and then dualize and interpolate.

- 3. (Muscalu & Schlag, Exercise 7.8)
 - (a) Show that $g \in BMO([0,1])$ if and only if $a_n = O(1)$. In that case verify that $g(x) \simeq |\log x|$ for $0 < x < \frac{1}{2}$ (the function g is referred to as a discrete logarithm).
 - (b) Show that $\chi_{[|x|<1]} \log |x| \in BMO([-1,1])$ but

$$\chi_{[|x|<1]}\operatorname{sign}(x)\log|x|\notin \operatorname{BMO}([-1,1]).$$

(c) Show that, for any f as in Definition 7.13,

$$f^{\sharp\sharp}(x) := \sup_{x \in Q} \inf_{c} f_Q | f(y) - c | dy$$

satisfies $f^{\sharp\sharp} \leq f^{\sharp} \leq 2f^{\sharp\sharp}$.

- 4. (Muscalu & Schlag, Problem 10.1) Does there exist a nonzero function $f \in L^2(\mathbb{R}^d)$ such that we have both f = 0 and f = 0 on nonempty open sets?
- 5. (Muscalu & Schlag, Problem 10.2) Does there exist a nonzero $f \in L^2(\mathbb{R})$ with f = 0 on [-1, 1] and f = 0 on a half-line? Can we have f = 0 on a set of positive measure and $\hat{f} = 0$ on a half-line? Hint: Consider the circle case, and relate functions of this type to a suitable nonvanishing theorem in
- Chapter 3. 6. (Muscalu & Schlag, Problem 10.3) Suppose that $E, F \subset \mathbb{R}^d$ have finite measure. Show that for any
- 6. (Muscalu & Schlag, Problem 10.3) Suppose that $E, F \subset \mathbb{R}^d$ have finite measure. Show that for an $g_1, g_2 \in L^2(\mathbb{R}^d)$ there exists $f \in L^2(\mathbb{R}^d)$ with

$$f = g_1 \text{ on } E, \quad f = g_2 \text{ on } F.$$

This can be seen as a statement that $f|_E$ and $\hat{f}|_E$ are independent.

7. (Muscalu & Schlag, Problem 10.4) Prove that, for $E, F \subset \mathbb{R}^d$ of finite measure, one has dim $\{f \in L^2(\mathbb{R}^d) \mid f = 0 \text{ on } E, \hat{f} = 0 \text{ on } F\} = \infty$.