Problem Set 1

Math 581A, Fall 2024

- 1. (Muscalu & Schlag, Problem 1.1) Suppose that $f \in L^1(\mathbb{T})$ and that $\{S_n f\}_{n=1}^{\infty}$ (the sequence of partial sums of the Fourier series for f) converges in $L^p(\mathbb{T})$ to g for some $p \in [1, \infty]$ and some $g \in L^p(\mathbb{T})$. Prove that f = g. If $p = \infty$ conclude that f is continuous.
- 2. (Muscalu & Schlag, Exercise 1.2) Let $\mu \in \mathcal{M}(\mathbb{T})$ have the property that

$$\sum_{n\in\mathbb{Z}}|\hat{\mu}(n)|<\infty$$

Show that $\mu(dx) = f(x)dx$, where $f \in C(\mathbb{T})$. Denote the space of all measure with this property $\mathbb{A}(\mathbb{T})$ and identify there measures with their respective densities. Show that $\mathbb{A}(\mathbb{T})$ is an algebra under multiplication and that

$$\widehat{fg}(n) = \sum_{m \in \mathbb{Z}} \widehat{f}(m)\widehat{g}(n-m) \qquad \forall n \in \mathbb{Z},$$

where the sum on the right-hand side is absolutely convergent for every $n \in \mathbb{Z}$ and indeceed is absolutely convergent over all n. moreover, show that $||fg||_{\mathbb{A}} \leq ||f||_{\mathbb{A}} ||g||_{\mathbb{A}}$ where $||f||_{\mathbb{A}} := ||\hat{f}||_{\ell^1}$. Finally, verify that if $f, g \in L^2(\mathbb{T})$ then $f * g \in \mathbb{A}(\mathbb{T})$.

- 3. (Muscalu & Schlag, Problem 1.5) Suppose that $\sum_{n=1}^{\infty} n|a_n|^2 < \infty$ and $\sum a_n$ is Cesàro summable. Show that $\sum a_n$ converges. Use this to prove that any $f \in C(\mathbb{T}) \cap H^{1/2}(\mathbb{T})$ satisfies $S_n f \to f$ uniformly.
- 4. (Muscalu & Schlag, Problem 1.8) Suppose that $f \in L^1(\mathbb{T})$ satisfies $\hat{f}(j) = 0$ for all j with |j| < n. Show that

$$\left\|f'\right\|_p \ge Cn\|f\|_p$$

for all $1 \leq p \leq \infty$, where C is independent of $n \in \mathbb{Z}^+$ and of the choices of f and p.

5. (Muscalu & Schlag, Problem 1.11) Given N disjoint $\operatorname{arcs} \{I_{\alpha}\}_{\alpha=1}^{N} \subset \mathbb{T}$, set $f = \sum_{\alpha=1}^{N} \chi_{I_{\alpha}}$. Show that

$$\sum_{\nu|>k} |\hat{f}(v)|^2 \le \frac{CN}{k}$$

Hint: The bound N^2/k is much easier and should be obtained first. Going from N^2 to N then requires one to exploit orthogonality in a suitable fashion.

6. (Muscalu & Schlag, Problem 1.12) Given any function $\psi : \mathbb{Z}^+ \to \mathbb{R}^+$ such that $\psi(n) \to 0$ as $n \to \infty$, show that one can find a measurable set $E \subset \mathbb{T}$ for which

$$\limsup_{n \to \infty} \frac{|\widehat{\chi_E}(n)|}{\psi(n)} = \infty$$

- 7. (Muscalu & Schlag, Problem 1.13) In this problem the reader is asked to analyze some well-known partial differential equations in terms of Fourier series.
 - (a) Solve the heat equation $u_t u_{\theta\theta} = 0, u(0) = u_0$ (the data at time t = 0) on \mathbb{T} using a Fourier series. Show that if $u_0 \in L^2(\mathbb{T})$ then $u(t,\theta)$ is analytic in θ for every t > 0 and solves the heat equation. Prove that $||u(t) u_0||_2 \to 0$ as $t \to 0$. Write $u(t) = G_t * u_0$ and show that G_t is an approximate identity for t > 0. Conclude that $u(t) \to 0$ as $t \to 0$ in the L^p or $C(\mathbb{T})$ sense. Repeat for higher-dimensional tori.
 - (b) Solve the Schrödinger equation $iu_t u_{\theta\theta} = 0, u(0) = u_0$ on \mathbb{T} with $u_0 \in L^2(\mathbb{T})$, using a Fourier series. In what sense does this Fourier series "solve" the equation? Show that $||u(t)||_2 = ||u_0||_2$ for all t. Discuss the limit u(t) as $t \to 0$. Repeat for higher-dimensional tori.

(c) Solve the wave equation $u_{tt} - u_{\theta\theta} = 0$ on \mathbb{T} by Fourier series. Discuss the Cauchy problem as in (a) and (b). Show that if $u_t(0) = 0$ then, with u(0) = f,

$$u(t,\theta) = \frac{1}{2}(f(\theta+t) + f(\theta-t))$$

8. (Muscalu & Schlag, Problem 2.1) Let (X, μ) be a general measure space. We say a bounded sequence $\{f_n\}_{n=1}^{\infty}$ in $L^1(\mu)$ is uniformly integrable if for every $\varepsilon > 0$ there exists $\delta > 0$ such that for any measurable E one has

$$\mu(E) < \delta \quad \Longrightarrow \quad \sup_n \int_E |f_n| \, d\mu < \varepsilon$$

and there exists $E_0 \subset X$ with $\sup_{n\geq 1} \int_{X\setminus E_0} |f_n| d\mu < \varepsilon$. The same applies to any subset of L^1 , not just to sequences. For simplicity, suppose now that μ is a finite measure.

(a) Let $\phi : [0, \infty) \to [0, \infty)$ be a continuous increasing function with $\lim_{t\to\infty} \phi(t)/t = +\infty$. Prove that

$$\sup_{n} \int \phi\left(|f_n(x)|\right) \mu(dx) < \infty$$

implies that $\{f_n\}$ is uniformly integrable. Conversely, show that this inequality is also necessary for uniform integrability and in particular that bounded sequences in $L^p(\mu)$ with p > 1 are uniformly integrable.

(b) Show that $\{f_n\}_{n=1}^{\infty}$ is uniformly integrable if and only if

$$\lim_{A \to \infty} \sup_{n \ge 1} \int_{[|f_n| > A]} |f_n(x)| \, \mu(dx) = 0$$

- (c) Show that for an arbitrary sequence $\{f_n\}_{n=1}^{\infty}$ in $L^1(\mu)$ the following are equivalent: (i) $f_n \to f$ in $L^1(\mu)$ as $n \to \infty$; (ii) $f_n \to f$ in measure, with $\{f_n\}_{n\geq 1}$ uniformly integrable.
- 9. (Muscalu & Schlag, Problem 2.4) For any $f \in L^1(\mathbb{R}^d)$ and $1 \le k \le d$, let

$$M_k f(x) = \sup_{r>0} r^{-k} \int_{B(x,r)} |f(y)| dy.$$

Show that, for every $\lambda > 0$,

$$m_L\left(\{x \in L \mid M_k f(x) > \lambda\}\right) \le \frac{C}{\lambda} \|f\|_{L^1(\mathbb{R}^d)}$$

where L is an arbitrary affine k-dimensional subspace and m_L stands for Lebesgue measure (i.e., k-dimensional measure) on this subspace; C is an absolute constant.

- 10. (Muscalu & Schlag, Problem 2.5) Prove the Besicovitch covering lemma on \mathbb{T} . Suppose that $\{I_j\}$ are finitely many arcs with $|I_j| < 1$. Then there is a sub-collection $\{I_{j_k}\}$ such that the following properties hold:
 - (a) $\cup_k I_{j_k} = \cup_j I_j$
 - (b) No point belongs to more than C of the I_{j_k} , where C is an absolute constant. What is the optimal value of C?

What can you say about the situation for higher dimensions (see for example Füredi and Loeb [44] and the references cited therein)?

11. (Muscalu & Schlag, Problem 2.12) Let $f \in L^1(\mathbb{T})$ satisfy $\hat{f}(n) = 0$ if |n| > N, where N is some positive integer. Show that there exists $E \subset \mathbb{T}$ with $|E| < \lambda^{-1}$ and with

$$\int_{\mathbb{T}\setminus E} \int_{\mathbb{T}} k_N(\theta) |f(\varphi - \theta)|^2 d\theta d\varphi \le C\lambda \|f\|_1^2$$

where $k_N(\theta) := N\chi_{[2|\theta|N \leq 1]}$ is the box kernel and C is some absolute constant. Compare this with Exercise 2.11.