Def: Let
$$
K: \mathbb{R}^d \cdot 203 \rightarrow \mathbb{C}
$$
, let $B > 0$.

\nThe $|C| \leq 2d$ is $2 \cdot 3$ and $|\sqrt{2} \cdot 3| \leq 1$.

\nFind $|C| \leq 2d$ and $|C| \leq 1$.

\nFind $|C| \leq 1$.

\nLet $|C| \leq 1$ and $|C| \leq 1$.

\nLet $|C| \leq 1$ and $|C| \leq 1$.

\nLet $|C| \leq 1$ and $|C| \leq 1$.

\nLet $|C| \leq 1$ and $|C| \leq 1$.

\nThen $|C| \leq 1$ and $|C| \leq 1$.

\nThen $|C| \leq 1$ and $|C| \leq 1$.

\nLet $|C| \leq 1$ and $|C| \leq 1$ and $|C| \leq 1$.

\nThen $|C| \leq 1$ and $|C| \leq 1$.

\nLet $|C| \leq 1$ and $|C| \leq 1$ and $|C| \leq 1$.

\nThen $|C| \leq 1$ and $|C| \leq 1$.

Thm: Let T be a Colderon-Zygmund operator. Then tor 1442 $\|T\|_{p\wedge p}$ 200. and T is l^1 - weak-1¹ bounded. Exercise. (Print-by-numbers)

We note that although we can Show that $HF f1P (IR)$, when $Fe 1P (IR)$ shen + + LP \cdot 5, HF is defined only abstractly by continuous extension specifically we can't necessarily say that For $FFL^3\setminus S$ $Hf(x) = \lim_{\substack{x \to 0 \\ 0 \le x \le x}} \int_{\alpha - x}^{x} dx = cx^3 + H$ This is similar to extending the classical derivative operator to weak

derivetives.

T. très end, we define a mexinel operator for the
transform . Denote Hilbert

$$
H_{*}F(x) = \sup_{\{x>0\}} | \int_{|x-y|>\epsilon} \frac{1}{x-y} F(y) dy |.
$$

$$
P_{\text{ref}}
$$
:
\n $H_{*}F(x) \leq M(HF)(x) = MF(x)$
\n $\frac{H_{*}F(x) \leq M(HF)(x) = MF(x)}{k}$
\nLet $\sum_{k=1}^{\infty} (x) = x_{\{x | x | 2, 1\}} k(x)$
\nand $\sum_{k} (x) = e^{-d} \sum_{k} (\frac{x}{4}) = \chi_{\{k | x | 2, 1\}} k(x)$.

Then

$$
\overline{\Phi}_{\epsilon} = (\varphi * k)_{\epsilon} - \hat{k}_{\epsilon} = \varphi_{\epsilon} + k_{\epsilon} - \hat{k}_{\epsilon}
$$

= $\varphi_{\epsilon} * k - \hat{k}_{\epsilon}$.

and

$$
\tilde{K}_{4} \neq \vartheta = \vartheta_{2} * (\kappa \star \xi) - \underline{\tau}_{1} * \xi.
$$

Clains:
$$
\{\overline{B}_6\}
$$
 and $\{\overline{B}_6\}$ are radially bounded
\napproximule: $identities$.

\nProblem's $\overline{B}(k) = \int \psi(k) \left(\frac{1}{2\pi i}\right) d\mu = \int \psi(k) \frac{1}{2} d\mu$

\n $= \int \psi(k) \frac{1}{x(\pi x)} d\mu$.

\nTherefore, we've previously, \int moved Aut

\n(H₁ F)(x) = $\frac{\omega_0}{\epsilon_0} \left| \frac{\mu_0}{\mu_0} \right| \frac{\mu_0}{\mu_0} \frac{\mu_$