
 

we've used a few specific
properties of the kernel of the

Hilbert transform This allows for

a straightforward generalization to

what are called Calderin Fygmund

Kernels
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Before we start to build the

theory for pointwise convergence of

partial sum operators let's discuss

pointwise convergence for the

Hilbert transform

We note that although we can

show tht HF Lilia when fe L IR

when It LP 5 HF is defined

only abstractly by continuous extension

specifically we can't necessarily
say that for FTL 5

Hfix To fandy

This is similar to extending the
classical derivative operator to weak



derivatives

To this end we define a

maximal operator for the Hilbert

transform Denote
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Lims Ee and Ue are radially

bounded approximate identities
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Therefore we've previously proved that

F G ICE f all

11 11 IM K F P11Eelle
MfEMLHF

Mf

Corollary H is bounded on LPCR for
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