$$
L^{2}-boundedness of the Hilbert Transform
$$
\nUse will estimate the Fourier transform of $\chi_{\{18136\}}^{(x)} \times \cdots$ then

\nuse $Plancknel$ the prove l^{2} -beundedness.

\nLemma:

\nLemma:

\nOutput

\nDescription:

Let
$$
k_{e}(\mu) = \chi_{\{\mu_{1}\},\{\mu\}}^{\mu_{2}(\mu)} \times \mathcal{L}_{\{\mu_{2}\},\{\mu\}}
$$
. Then
\n $\lim_{\epsilon \to 0} \frac{\int_{\mu_{1}}^{\lambda_{2}} f(\xi) \, d\xi}{\int_{\mu_{2}}^{\mu_{1}} f(\xi)} \leq 1$.
\n $\frac{\partial f}{\partial \mu_{2}}^{\mu_{1}} \leq \lim_{R \to \infty} \int_{\mu_{1} \leq R} e(\mu \xi) k_{e}(\mu) d\mu$.
\n $= \int_{\mu_{1} \leq \mu_{1}^{-1}} e(-\mu \xi) k_{e}(\mu) d\mu$
\n $= \int_{\mu_{1} \leq \mu_{1}^{-1}} e(-\mu \xi) k_{e}(\mu) d\mu$

$$
WLDL_{0}
$$
, assume $E \le |3|^{-2}$, then
\n
$$
\int eL-x\sqrt{2}L_{\epsilon}(x) dx
$$
\n
$$
|\lambda| = |3|^{-2}
$$
\n
$$
= \int eL-x\sqrt{2} \frac{1}{x} dx
$$
\n
$$
= \int e(x\sqrt{2}) \frac{1}{x} dx = \int \frac{1}{x} dx
$$
\n
$$
= \int e(x\sqrt{2}) \frac{1}{x} dx = \int \frac{1}{x} dx
$$
\n
$$
= \int eLx\sqrt{2} - 1 \int \frac{1}{x} dx
$$
\n
$$
= \int eLx\sqrt{2} - 1 \int \frac{1}{x} dx
$$
\n
$$
= \int eLx\sqrt{2} - 1 \int \frac{1}{x} dx
$$
\n
$$
= \int \int \int \int \int e(L-x\sqrt{2}) - 1 \int x dx
$$
\n
$$
= \int \int \int e(L-x\sqrt{2}) - 1 \int \frac{1}{x} dx \le \int |3| dx
$$
\n
$$
= \int eL|x| \le |3|^{-1}
$$
\n
$$
\le \int eL|x| \le |3|^{-1}
$$
\n
$$
\le 1.
$$

For the second term, note that
\n
$$
e^{\pi i} = -1
$$
, and
\n
$$
\int e^{2\pi i x \xi} \frac{1}{x} dx = \int e^{2\pi i x \xi} e^{\pi i} \frac{1}{x \frac{1}{2!}} dx
$$
\n
$$
= -1 \int e(x \xi) \frac{1}{x - \frac{1}{2!}} dx
$$
\n
$$
= -1 \int e(x \xi) \frac{1}{x - \frac{1}{2!}} dx
$$
\nTherefore,
\n
$$
\int e^{2\pi i x \xi} \frac{1}{x} dx
$$
\n
$$
= \frac{1}{2} \int e^{2\pi i x \xi} \frac{1}{x} dx
$$
\n
$$
= \frac{1}{2} \int e^{2\pi i x \xi} \frac{1}{x} dx - \int e^{2\pi i x \xi} \frac{1}{x - \frac{1}{2!}} dx
$$
\n
$$
= \frac{1}{2} \int e^{2\pi i x \xi} \frac{1}{x} dx - \int e^{2\pi i x \xi} \frac{1}{x - \frac{1}{2!}} dx
$$

$$
=\frac{1}{2}\int e^{2\pi i x^2}(\frac{1}{x}-\frac{1}{x-1})-\frac{1}{2}\int e^{2\pi i x^2}\frac{1}{x-1/2!}dx
$$

131⁻¹<1 x14R
2111⁻¹<1 x14R

$$
= \frac{1}{2} \int e^{2\pi ix^3} \left(\frac{-1/23}{x(x-1/23)} \right) - \frac{1}{2} \int e^{2\pi ix^3} \frac{1}{x-\frac{1}{23}} dx
$$

Fig. (23.4817° k1512)

There Fore, $\left[\int_{\{|x|^{-1}L\}x\in R}e^{2\pi ixx} \frac{1}{x} dx \right]$

$$
\leq (131^{-2})^{-1} \cdot \frac{1}{111} + \frac{1}{111} - \frac{1}{111} + \frac{1}{111} - \frac{1}{111} + \frac{1}{121} + \frac{1}{121} - \frac{1}{111} + \frac{1}{111} - \frac{1}{111} + \frac{1}{111} - \frac{1}{111} + \frac{1}{111} - \frac{1}{
$$

$$
\sup_{\substack{s\sim p\\ \text{where}}} \left| \int_{|3|^{-1} \leq |x| \leq R} e^{2\pi i x^2} \frac{1}{x} dx \right| \leq 1.
$$

Constany \parallel H \parallel _{2 +2} < \sim

pf: By Plencherel, let fe CellR). $||HF||_2 = \lim_{\epsilon \to 0} ||H_{\epsilon}F||_2 = \lim_{\epsilon \to 0} ||K_{\epsilon}F||_2 \leq \lim_{\epsilon \to 0} ||\hat{k}_{\epsilon}\hat{F}||_2$. $\leq \left(\begin{smallmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{smallmatrix}\right) \left(\begin{smallmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{smallmatrix}\right)$

Observation: Let
$$
\mathbf{I}_2 \cdot \mathbf{Z}_k
$$
, and $\mathbf{I}_2 \in \mathbb{Z}_{k_2}$

\nthen one of the following must hold

\n• $\mathbf{I}_1 \wedge \mathbf{I}_2 = \emptyset$

\n• $\mathbf{I}_2 \in \mathbf{I}_2$

\n• $\mathbf{I}_2 \in \mathbf{I}_2$

\n• $\mathbf{I}_2 \subset \mathbf{I}_2$

There exorts ko large enough so that $\frac{1}{|I|}$ $\int_{I} |F| dx$ For all $I \cdot \mathcal{D}_{\kappa_{0}}$

For each $I \in \mathcal{D}_{\kappa_0}$, there are two intervels J_1 and J_2 g, b . J_2 , $J_2 \in \mathcal{D}_{k_0+1}$ and T_1 , T_2 c T_1 . We call these the children of ^I Then either

$$
\frac{1}{|\mathcal{F}_{i}|}\sum_{\mathcal{T}_{i}}|\mathfrak{F}_{i}\leq\lambda\quad\text{or}\qquad\frac{1}{|\mathcal{F}_{i}|}\sum_{\mathcal{T}_{i}}|\mathfrak{F}_{i}>\lambda
$$

for each ⁱ $F = \frac{1}{15!} \sum_{\pi} |F| > 1$, then let $3; F$ and note tent $\frac{1}{15!} \int_{\mathbb{R}^1} |\xi| \leq \frac{1}{15!} \int_{\mathbb{Z}} |\xi| = \frac{2}{15!} \int_{\mathbb{Z}} |\xi| \leq 2 \times$

