Properties of the Dirichlet Kernel.

\n
$$
D_{\tau}(x) = \int e(x\zeta) d\zeta
$$
\n
$$
= \frac{1}{2\pi i x} [e(xT) - e(-xT)]
$$
\n
$$
= \frac{1}{2\pi i x} 2 i \sin(2\pi xT)
$$
\n
$$
= \frac{1}{\pi x} \sin(2\pi xT).
$$

$$
First, \quad |D_T(x)| \leq \int 1 d3 \leq 2\tau.
$$

and
$$
|D_T(x)| \leq \frac{|sin(2\pi x\tau)|}{|\pi x|} \leq \frac{1}{\pi} \frac{1}{|x|}
$$

Near the origin, DT resembles the approximate identity $Tx_{r\frac{1}{7},\frac{1}{7}}$ but the tails of D_T decay $cri\dot{t}$ ically slowly. Therefore, $||b_T||_{L^1} \sim log(T)$ for T: This suggests text $||D_{T}*F-F||_{L^{2}}$ does not necessarily converge to zero for fe L'(R), p EI,a This would indeed be the case $if \int_{T} (x) = min (T, |x|^{-1})$ However, the actual Ferne of 1 ^x has enough cancellation to make the reality complicated.

We notice that the question of whether $11D_{T}*f - f(1_{2}P \rightarrow Q \text{ for }f2P$
Sene question as is not the same whether D_{τ} # $F \rightarrow F$ Lebesgue a.e. $f_{\epsilon r}$ $\frac{1}{r} \epsilon L^p$. The First question is a lot
easier to answer, so we deal easier to answer, with text first. Let's start with ^a comparison to kernels smoother than the Dirichlet Kernel

Formelly, $D_{T}(3) = \gamma_{7.77}(3)$. The relationship between the discontinuity of Y.tt and the relatively slow $decay$ of $1D_{\tau}(*1)$. If we average the pertial sums operator or the Dirichlet kernel we get ^a smoother kernel For $F_t L^1(\mathbb{R})$, $T>0$, let $\sigma_{\tau} f(x) := \frac{1}{T} \int_{0}^{T} S_{t} f(x) dt.$ If $K_T := \frac{1}{T} \int D_t dt$, then σ_{τ} f = K_{τ} + f and KT is known as the Fejer Kernel

$$
K_{\tau}(x) = \frac{1}{T} \int_{0}^{T} \int_{-\frac{1}{t}}^{t} \int_{-\frac{1}{
$$

Lemma [Riemann-Lebegus Lemma)
\nI.
$$
F \in L^{2}(\mathbb{R})
$$
, the $\hat{F}(3) \rightarrow 0$ as $|\hat{y} \rightarrow \infty$.
\n $\mathbf{r} \cdot \mathbf{r} \cdot \mathbf$

$$
= \int (f(x-y) - f(x)) |K_{T}(y)| dy.
$$

Recall $|4-4| |K_{T}(y)| \le \frac{1}{T} min(T^{2}, \frac{1}{y^{2}})$
 $\le \frac{1}{T} \frac{1}{y^{2}}$.

 $|f(x-y)-f(x)| \in [T]_{1}|y|^{d}$ and
Hus

$$
10-5(x)-5(x)\leq \frac{1}{T}\left(\frac{|y|^{d}}{y^{e}} + \frac{3}{T}\right)^{d} \leq T^{-d}
$$

7)
\n110-5-111_m
$$
\leq T^{-2}
$$

\nObserve that
\n $S_{T}S-S=S_{T}(S-\sigma_{T}S)+\sigma_{T}S-\frac{S}{2}$

$$
\tilde{}
$$

$$
||S_{T}F-F||_{\infty} \leq (11D_{T}||_{L^{2}(EC,c_{3})}+1) 11F_{-\sigma_{T}}F||
$$

$$
\stackrel{\mathcal{L}}{\Leftrightarrow} T^{-d} \log(T) \rightarrow 0 \qquad \qquad \Box
$$

$$
\frac{P_{10}}{P_{21}} = \frac{P_{10}}{T_{10}}
$$
\n
$$
= \
$$

$$
\frac{1}{\sin \theta} \int_{1}^{1} |f|^{2} dx = \frac{1}{2} \sum_{r=0}^{\infty} \frac{1}{r^{2}} \int_{1}^{1} |f_{r} \cdot \frac{1}{2} \cdot f|^{2} dx
$$
\n
$$
1 \int_{1}^{1} |f_{r} \cdot f|^{2} dx = \frac{1}{2} \int_{1}^{1} |f_{r} \cdot f|^{2} dx
$$
\n
$$
1 \int_{1}^{1} |f_{r} \cdot f|^{2} dx = \frac{1}{2} \int_{1}^{1} |f_{r} \cdot f|^{2} dx
$$
\n
$$
1 \int_{1}^{1} |f_{r} \cdot f|^{2} dx = \frac{1}{2} \int_{1}^{1} |f_{r} \cdot f|^{2} dx
$$