For fixed teth

$$\sum_{J \in I} |\langle h_{Z_{1}}, T_{N-J} \rangle| \leq \sum_{k=1}^{2^{n}} \frac{1}{k!^{4}J} \leq C(J)$$
Thus, by Scherie test
 $||\Delta_{n}T_{\Delta n}||_{2>2} \leq C(J)$ For all n.
Next, Recall Cotlerie Lemma
Lemme: (Cotlerie Lemma)
Let $\overline{z}T_{J}T_{j=1}^{n}$, $\overline{T}_{J}:H \rightarrow H$, $\overline{y}: \overline{z} \rightarrow ||\overline{z}^{+}$, \overline{z} .
 $||T_{J}:T_{n}|| \leq \overline{y}^{2}(J-N)$,
 $||T_{J}:T_{n}|| \leq \overline{y}^{2}(J-N)$,
 $||T_{J}:T_{n}|| \leq \overline{y}^{2}(J-N)$.
The $\overline{z} = \overline{y}(N) \leq A \cos \beta$, then
 $||\overline{z}_{j=1}^{n} = \overline{T}_{J}||_{M \rightarrow H} \leq A$.
For each $n \in \mathbb{Z}_{+}$.
En Talan is a transformation from the

of Functions spanned by
$$\lambda h_{I}^{3}_{IED_{n}}$$

into the set of functions spanned by
 $\lambda |J|^{\frac{1}{2}} \chi_{J}^{3} J_{ED_{n}}$
Thus EnTAn has a matrix representation with
terms $\langle T_{n}r_{n}, |J|^{\frac{1}{2}}\chi_{J}^{3} \rangle$

$$= |J|^{-\gamma_{e}} \left[\langle T_{y_{L}} | z_{J} z_{2 \cdot L} \rangle + \langle T_{y_{L}} , x_{J} Z_{2 \cdot L} \rangle \right]$$

$$\leq |J|^{-\gamma_{e}} \left[\langle T_{y_{L}} | z_{J} z_{2 \cdot L} \rangle + \langle T_{y_{L}} , x_{J} Z_{2 \cdot L} \rangle \right]$$

$$+ C \int_{J \setminus 2 \cdot L} \frac{|T|^{\gamma_{e} + J} |T|^{\gamma_{e}}}{d^{i_{e} + (x, T)}} d_{x}.$$

+
$$\frac{|II|^{1/2}+5}{4!^{1+1}}$$
 $|JI|^{-1/2} \cdot |JI| \xrightarrow{2} \{2 \cdot I \cap J = \phi\}$ (J)

+
$$\frac{|I|^{1}}{4}$$
 $|J|^{1}$ χ_{2} χ_{2} (J)

$$\leq \sup_{\mathbf{I} \in \mathcal{D}_{n}} \left(3 + \frac{2^{n}}{\sum_{k \geq 1}^{n} \frac{|\mathbf{I}|^{\vee} + \int (2^{n})^{\vee} }{(|\mathbf{I}| + \frac{2^{n}}{2})^{1+\int}} \right)$$

- $\leq \sup_{I \in T_{n}} 3 + \sum_{m=1}^{n} |I|^{\frac{1}{2}+J} (2^{n})^{\frac{1}{2}+J} (\mathcal{U})$
 - 5 C(2)

an J

 $\zeta_{L}(\delta)$ Thus, by Schur's Test $\sup_{n} \|E_{n}T_{n}\Delta_{n}\|_{2,n2} \leq C(\delta).$

into the space of functions granned
by
$$\{h_{3}\}_{3} \in D_{m}$$
 so the coefficients
 $\langle A_{n}T_{0}^{+}E_{m}T_{0}A_{m}h_{2}, h_{3} \rangle$
 $= \langle E_{n}T_{0}h_{2}, E_{m}T_{0}h_{3} \rangle$
We first use the simplest estimate.
 $|E_{n}T_{0}h_{2}(y)| \leq |I|^{n/n} \frac{|I|^{n+1}}{(|II|+difly, I')}^{n+1}$.
 $|E_{n}T_{0}h_{3}(y)| \leq |I|^{n/n} \frac{|I|^{n+1}}{(|II|+difly, I')}^{n+1}$.
 $|E_{m}T_{0}h_{3}(y)| \leq |I|^{-\gamma_{2}} \frac{|I|^{n+1}}{(|II|+difly, I')}^{n+1}$.
 $|E_{m}T_{0}h_{3}(y)| \leq |I|^{-\gamma_{2}} \frac{|I|^{n+1}}{(|II|+difly, I')}^{n+1}$.
 $This is due the decay assay the support
 $oF I and J along with the estimate
 $\int_{I} T_{0}h_{2} \leq |II|^{-\frac{1}{2}} ||T_{0}h_{2}||_{2} \leq |I|^{-\gamma_{2}}$.
 $Therefore;$
 $|\langle E_{n}T_{0}h_{2}, E_{n}T_{0}h_{3} \rangle| \leq \sum_{R} [(|I||T_{1})^{-\gamma_{2}} \frac{|I|^{1+1}}{(|I|+difly, I')}^{n+1}$, $(|II|+difly, I')^{n+1}$.$$

Let
$$\Psi_{J}(y) = (\frac{|T|^{HJ}}{|T| + dist(x, T)})^{HJ}$$

 $\Psi_{I}(y) = \frac{|T|^{HJ}}{(|T| + dist(y, T))^{HJ}}$

Note that $\| \| \Psi_{\mathbf{S}} \|_{L^{2}} \leq |\mathbf{J}| \text{ and } \| \| \Psi_{\mathbf{E}} \|_{L^{2}} \leq |\mathbf{T}|$

and $\forall_{\mathcal{I}} \sim \frac{1}{|\mathcal{I}|} \mathcal{I}_{\mathcal{I}} \neq \forall_{\mathcal{I}_{0}}$ and $\forall_{\mathcal{I}} \sim \frac{1}{|\mathcal{I}|} \mathcal{I}_{\mathcal{I}} \neq \forall_{\mathcal{I}_{0}}$ Thus,

IED, JED. $\leq \sup \sum_{\mathbf{I} \in \mathcal{D}_n} \sum_{\mathbf{I} \in \mathcal{D}_n} (|\mathbf{I}| |\mathbf{I}|)^{\frac{1}{2}} \langle \mathbf{Y}_{\mathbf{I}}, \mathbf{Y}_{\mathbf{T}} \rangle$ ~ Sup Z (IIII3) ~ < 42 * 21, 43 * 243) JeD, Z+D, (III3) ~ < 42 * 21, 43 * 243) = $\sup_{T \in \mathbb{Z}_{n}} \sum_{T \in \mathbb{Z}_{n}} \frac{(|T||T|)^{-r_{2}}}{|T||T|} \langle \pi_{T}, \Psi_{T}^{*} \Psi_{T}^{*} \Psi_{T}^{*} \rangle$ = sup (1112^m)^{-Y2} < X_I, 4_I + 4_J + <u>L</u> ×_Y > I + D. III 2^m < X_I, 4_I + 4_J + <u>L</u> ×_Y > Since) \ \ 2, + \ 2, + \ 2, x, 1, & \ 1 \ 2, + \ 2, 1 \ 2 \ 1 \ 2, 1 \ ≤ 1T| 2^{-m}.

Moreover,

 $\begin{array}{l} \sup_{\mathbf{I} \in \mathcal{D}_{n}} \sum_{s \in \mathcal{D}_{n}} |\langle \mathbf{E}_{n} \mathcal{T}_{s} \mathbf{h}_{T}, \mathbf{E}_{n} \mathcal{T}_{s} \mathbf{h}_{T} \rangle| \\
\leq \sup_{s \in \mathcal{D}_{n}} \frac{(1 \mathbb{I} \mathbb{I} \ 2^{-n})^{-V_{2}}}{1 \mathbb{I} \mathbb{I} \ 2^{-n}} |\mathbf{I} \mathbb{I} \ 1 \mathbb{I} \mathbb{I} \ 2^{-n} \\
\leq (2^{m-n})^{Y_{2}}
\end{array}$

The next estimate is nucle harder,
but we have the
$$T_{e}(e)$$
 and then.
Sup
 $J \in D_{n} \sum_{I \in D_{n}} | \angle E_{n} T_{e}h_{Z} | E_{n} T_{e}h_{Z} \rangle |$
 $= \sup_{I \in D_{n}} \sum_{I \in D_{n}} | \angle E_{n} T_{e}h_{Z} | E_{n} T_{e}h_{Z} \rangle + \sum_{I \in Z_{n}} | \angle E_{n} \rangle +$

$$\leq \sum_{\substack{I \in J \\ I \in I}} |I|^{\frac{1}{2}} |I|^{\frac{1}{2}} |I|^{\frac{1}{2}} \frac{1}{2^{(n-m)}(1-s)s} + \int_{I}^{I} (|I||I|)^{\frac{1}{2}} y_{I}$$

$$= 2^{(n-m)} \sqrt{2} (n-m)(1-(1-s)s) + 2^{-(n-m)} \sqrt{2} (n-m)(1-(1-s)s)$$

$$= 2^{(n-m)} (|I-(1-s)s-\frac{1}{2})$$

$$= 2^{(n-m)} (\frac{1}{2} - (1-s)s)$$

$$\sum_{\substack{I \in \mathcal{D}_{n} \\ dist(I,T) \ge 2}} | \langle E_{y_{E}} T_{0} h_{E}, E_{n} T_{0} h_{S} \rangle | \\ I \in \mathcal{D}_{n} \\ dist(I,T) \ge 2^{(n-n)(1-N)|I|} \\ \leq \sum_{\substack{I \in T \\ dist(I,T) \ge 2}} (|II||T_{1}|)^{-\gamma_{E}} \langle P_{I_{0}} + \gamma_{I}, P_{I_{0}} \rangle \\ \leq (|I_{0}||I_{0}|)^{-\gamma_{E}} \int P_{I_{0}} P_{I_{0}} + P_{I_{0}} \\ \leq (|I_{0}||I_{0}|)^{-\gamma_{E}} \int P_{I_{0}} P_{I_{0}} + P_{I_{0}} \\ P_{I_{0}} + P_{I_{0}} + P_{I_{0}} \\ \leq (|I_{0}||I_{0}|)^{-\gamma_{E}} \int |I_{1}| \frac{|I_{0}}{2} \int P_{I_{0}} + P_{I_{0}} + P_{I_{0}} + \frac{|I_{0}}{2} |I_{0}| |I_{1}|^{\gamma_{T}} \\ P_{I_{0}} + P_{I$$

$$= [I_0] \frac{1}{2} |3|^{1} \frac{1}{2} \sum_{n=1}^{\infty} (n-n)^{(1-\delta)} 2^{-(n-n)} \int_{1+\delta}^{1+\delta}$$

$$= (2^{(n-n)})^{-\gamma_{2}} (2^{n-n})^{\delta(1+\delta)}$$

$$= 2^{(n-n)}(-\frac{1}{2} + \delta(1+\delta))$$

$\| (\mathbb{E}_{n} \mathbb{T}_{0} \mathbb{E}_{n})^{\delta} \mathbb{E}_{n} \mathbb{T}_{0} \mathbb{E}_{n} \mathbb$

This estimate is strong enough to Coffar's Lemma . Thus employ VE EnTANIZZZ, VEANTENIZZ COD