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The T 1 Theorem on 0,13
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The decay estimates are enough

to perform the Calderon Zygmunt

argument demonstrating weak L1

boundedness But how do we show

L boundedness for a non convolution

operator

Our strategy so far has been to

show that convolutiontype SFOs are

Fourier multiplier operators with

bounded multiplier This won't be possible
with general SIO's

This is where the TIA theorem comes

into play
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