Atomic Decomposition of dyadic "K²

Det: a: [0,1] > c is an Il¹ atom iff for some I 6 D we have . Supp Ca) CI . $||A||_{2(C_0,\Omega)}$. $|I||^{1/2} \leq 1$. $\int a = 0$ Functions L¹-normalized Har $|I|^{\nu_e}$ $h_I = \frac{1}{|I|} (x_{I_1} - x_{I_2})$ a good example of 712 atoms. Lemmer IF a is an atom, then $\lVert \mathbf{a} \rVert_{\mathcal{H}^{\mathbf{L}}} \leq \mathbf{1}$ and $\lVert \mathbf{a} \rVert_{\mathbf{L}^{\mathbf{L}}} \leq \mathbf{1}$. $F:$ $a = \sum c_{\text{y}} h_{\text{y}}$ Let JCI

Then

$$
||\xi_{\alpha}||_{L}^{2} = \int_{I} (\xi_{\alpha})^{2} (\omega_{\alpha}) d\mu = \sum_{T \in I} |c_{T}|^{2} = ||\alpha||_{L}^{2} \in |I|^{-1}
$$

and $\int \xi_{\alpha-\alpha} d\mu = \int \frac{1}{|T|} \int f(x) d\mu$ implies

$$
||\xi_{\alpha}||_{L} = |T|^{1/2} ||\xi_{\alpha}||_{L} = |T|^{1/2} ||\alpha||_{L}^{2} \in I.
$$

Then: For every $f \in H^{1}(L_{0},i)$ then exist
a sequence of solutions $\{c_{i}\}_{i=1}^{2\alpha}$ and atoms $\{c_{i}\}_{i=1}^{2\alpha}$
such that $f \in Z_{i}(a)$ converge in H^{2}
with $\sum_{i} |c_{i}| \in C h^{2} ||\pi|_{L}^{2}$ from a absolute
symbol
with $\sum_{i} |c_{i}| \in C h^{2} ||\pi|_{L}^{2}$ from a absolute
number of $L^{2} \in I$.
Also, assume f has a finite than λ_{α} .
For each $T \in \mathbb{D}$, define λ_{α}
by
 $\lambda_{\alpha} := \min \{2^{\alpha} | \kappa \in \mathbb{Z}_{+}, |\xi_{\kappa} \in I| (\Re \omega) \ge 2^{\alpha} \} | \xi_{\kappa} \}$

Denote
\n
$$
73123 = 5 \times 6 \times 1 = 65603 > 223
$$

\n $4122 = maximal dyadic intervals in 7322$.

Then

$$
S_{\Sigma_{\rho,13}} \leq \lambda(\tau_{\rho,13}),
$$

and in particular $||S_{\text{total}}^2||_2^2 = ||\dot{f}_{\text{L0,1}}||_2^2 = \sum_{T \in \text{Y}(r,1)} 6 \times (0.13)$ ET LO_n T $t_{\rm [O,N]}$ will be $\{u_p | b \}$ a factor) our tire atom We repeat this process with each tree pruned away in the previous step For each $I_{1,j}$, define $\lambda(\tau_{1,j})$, $\mathcal{B}(\mathbf{I}_{1,j})$ and $\mathcal{F}(\mathbf{I}_{2,j})$ as above and prune the tree with root $I_{4,j}$

$$
\Upsilon(\tau_{1,i}):=\Upsilon(\tau_{1,i})\setminus\Big(\bigcup_{\tau\in\mathfrak{L}_{(\tau_{1,i})}}\Upsilon(\tau)\Big).
$$

As before, $f_{\tau_{4,j}} := \sum_{\tau \in \Upsilon(\tau_{4,j})} b_{\tau} h_{\tau}$. $SF_{\tau_{4i}} \neq \lambda(T_{1,i})$ Then and $|| 5F_{\text{I}_{1,j}}||_2^2$ = $|| 5F_{\text{I}_{1,j}}||_2^2$ \leq \int $(T_{\text{I}_{1,j}}) | T_{\text{I}_{2,j}}|.$ Continuing in this Fashion, we obtein a collection at disjoint subtrees, 27, 3, with roots $T_{k}F1$ and $F_{k}=\sum_{\mu}\frac{1}{2}F_{\mu}^{k}$ with $\|\mathbf{F}_{\mu}\|_{2} \in 2^{n_{\kappa}} | \mathbf{T}_{\kappa}|^{\gamma_{2}}$ The minimedity of me, implies $\frac{1}{4} |I_{\kappa}|$ \leq $|S_{\kappa} \times E_{\kappa}|$ $S_{\kappa} \times \frac{1}{2} |I_{\kappa} \times L_{\kappa}|$ $Also, $A$$ I & Ik' For kt k', then $n_{\kappa} > n_{\kappa}$

Detine

$$
C_{\kappa} := 2^{\kappa_{\kappa}} |T_{\kappa}|
$$

$$
\alpha_{\kappa} := C_{\kappa}^{-1} f_{\kappa}
$$

Then $F = \sum c_{\kappa} a_{\kappa}$ and

$$
\sum_{k} |e_{k}| = \sum_{k} 2^{k} \mu |E_{k}|
$$
\n
$$
\leq H \sum_{k} 2^{k} \mu |S_{k} e_{L_{k}}| 5F_{k} \geq 2^{k-1} \}
$$
\n
$$
\leq \psi \sum_{k} 2^{k} |S_{k} e_{k} \cdot E_{k}| 3 | 5F_{k} \geq 2^{k-2} \}
$$
\n
$$
\leq C \sum_{k} 5F
$$
\n
$$
\frac{1}{2} \sum_{k} \sum_{k} 5F
$$
\n
$$
\
$$