Def: (Dyadie Square Function) For any fel2(EU,13) with Stee we define $Sf(x) = (\sum_{i \in T} |a_{i}|^{2} h_{i}^{2} (x))^{1/2}$. $for \quad f = \sum_{I \in \mathbb{Z}} a_I h_I$ Def: (Dyadie Brid and Dyadie Hendy) The dyadic Hardy space is defined $\mathcal{H}^{1}(\mathcal{I}_{0},1\overline{3}) = \{f_{e}\}^{1}(\mathcal{I}_{e},1\overline{3}) \left| \begin{array}{c} (f_{e},1\overline{3}) \\ (f_{e},1\overline{3})$ The dyadia BMU space is defined as the space of all FG2²(CO,13) with with

 $C^{-1} \sum |a_{T}|^{2} h_{T}^{2}(x)^{2}$ $\leq \mathbb{E}_{+} \left[\sum_{r_{\perp}} (t) a_{\perp} h_{\perp} (x) \right]^{p}$ $\leq C \left(\sum k_{z} l^{2} h_{z}^{2} (x) \right)^{V_{z}}$ then, since $\sup_{T \in T} \| = 1$, Ell Zrzcharhzlip S / Flip Multiplier thm. By the A duality argument completes the argument Π. Since SF CX) ~ E [Ir_CHarhI CN] in some senge saysthat generic Stell Haar multiplier operators, M, M, Fell.

N¹ - BMO Duality

Thm: Let F be a finite linear combinetien af Haar Functions. For any gEBMO, one hes $|\langle F, q \rangle_{1^{2}(Co, \Gamma)}| \leq ||f||_{\mathcal{H}^{2}} ||q||_{\mathcal{R}^{PLO}}.$ pf. g=Zbyhy and f= Eaghy. Let with az, by ER for all JETS. Since ||g||BALO = sup 121-15/bgl2, it suffices to accune that g has a finite theor expension $S(y|I)(x) := \left(\sum_{j=1}^{2} b_{j}^{2} b_{j} \right)^{2} \frac{y_{2}}{\sum_{j=1}^{2} b_{j}}$ Define Let $I(x) = larges \neq interval s.t. <math>g = \sum \frac{1}{2^{n}h} c_{0}, \frac{1}{2^{n}}$ $S^{2}(q|T)(x) \leq Z \sup_{J \ni x} \int S^{2}(q|T)$

For each x e To, 13, such a I(x) extetes since ques a finite Hear expension (Eventually, g= g_J for J enally).

Claim: For each JETD, |{xeJ| IW>J]=====

To prove the clarm, let A:= 2×65 | I(x) £ 3]

For	xeJ	, the	ment	inclity	cf	T(*)
imp	lies					
	८(९) र	561>2	(مې ۲۶×	لح 2(م) ۲	いこ	2 5 56(17)

Thus $\int S(y|T)(w) \geq \int S(y|T)(w)$ > 2 5 5 5(g) T) = 21 A1 171-2 (5417) 1412 ショ う perform a careful Cauchy-Schwarz Now we argument. Kight & Ingbyl = ZlJt'Szylagbyl Jet

 $= 2 \int_{0}^{1} \sum_{T \in I(x)} h_{T}^{2} |a_{T}b_{T}|$

$$\leq 2 \int_{0}^{1} \zeta \left(\sum \log^{2} \log^{2} \int_{0}^{\infty} \right)^{V_{e}} \left(\sum \log^{2} \log^{2} \int_{0}^{\infty} \int_{0}^{1} \sum \log^{2} \log^{2} \int_{0}^{1} \sum \sum \log^{2} \log^{2}$$