A Note Concerning the isometry between H and H^{+}.
Given H and H^{*}, Riesz Rep. Tho implies \exists linear Barack space isometry between H and H^{*}. One can define an inner product on H^{*} by

$$
\left\langle f_{1}\right\rangle_{H^{*}}:=\left\langle\tau^{-1}(f), \tau^{-1}(g)\right\rangle_{H} .
$$

So H and H^{*} are athe sames in a very strong severe but not always in a useful sense
Example: Consider $\left.\left.V \underset{t}{c} H,(H,\langle\cdot \cdot\rangle\rangle_{H}\right),(V,\langle\cdot \cdot\rangle\rangle_{V}\right)$ and V dense in $H_{1} \quad\langle\cdots\rangle_{V} \neq\left.\langle\cdot,\rangle_{H}\right|_{\text {UrU }}$. For example: $\quad H=l^{2}(N) \quad\langle a, b\rangle_{H}=\sum a_{n} \bar{b}_{n}$ and $\quad V=h^{1}(N)=\left\{a=\left.\left(a_{0}\right)_{m i n}^{\infty}\left|\sum n^{2}\right| a_{n}\right|^{2}<\infty\right\}$ with $\langle a, b\rangle_{v}:=\sum_{n} a_{n} \bar{b}_{n}$.
Then $H^{*}=l^{2}(N)$
and $\quad V^{t}=h^{-2}(N)=\left\{\sum \frac{1}{n^{2}}\left|u_{n}\right|^{2}<\infty\right\}$.
Note: $T: V \rightarrow V^{*}$ isomporphism defied by $T(E)=\left(n^{2} a_{n}\right)_{=1}^{\sigma}$

Cor: $H \equiv H^{*}$

Def: (Orthonomeal Set)
The set $\left\{x_{\alpha}\right\}_{\alpha \in I} \subset H$ is orthonormal if

$$
\left\langle x_{\alpha}, x_{\beta}\right\rangle= \begin{cases}0 & \alpha \neq \beta \\ 1 & \alpha=\beta\end{cases}
$$

Given a linearly independent set $\left\{x_{n}\right\}_{n=1}^{\infty}$, one can construct an orthonormal sequence $\sum_{2} \sum_{n=1}^{\infty}$ using Gram-Schmidt such tet

$$
s p a n\{\operatorname{en}\}_{n=1}^{N}=\operatorname{spen}\left\{x_{n}\right\}_{n=1}^{N} \quad \text { Kor all }
$$

Bessel's Inequality
If $\left.\sum_{x_{\alpha}}\right\}_{\alpha \in I}$ is an orthonormal set in H, then for any $x \in H$

$$
\sum_{\alpha \in I} \mid\left\langle\left. x_{\left., x_{\alpha}\right\rangle}\right|^{2} \leq\|x\|^{2}\right.
$$

F: Surfices to show for finite subcollections E $E A$

$$
\begin{aligned}
& 0 \leqslant \| x- \sum\left\langle x_{1} x_{2}\right\rangle x_{\alpha} \|^{2} \\
&=\|x\|^{2}-2 \operatorname{Re}\left(\sum\left\langle x_{1} x_{\alpha}\right\rangle\left\langle\overline{\left\langle x, x_{2}\right.}\right)+\left\|\Sigma\left\langle x_{1} x_{\alpha}\right\rangle_{a}\right\|^{2}\right. \\
&=\|x\|^{2}-2 \sum\left|\left\langle x, x_{a}\right\rangle\right|^{2}+\sum\left|\left\langle x_{,} x_{\alpha}\right\rangle\right|^{2} \\
&\left.\Rightarrow \quad \sum\left|<x_{1} x_{a}\right\rangle\right|^{2} \leq\|x\|^{2}
\end{aligned}
$$

π.
Tham: If $\left\{x_{\alpha}\right\}_{d \in I}$ is an orthonornal set in H. the follering are equinalent
a.) If $\left\langle x, x_{\alpha}\right\rangle=0 \quad f_{\alpha} \in I$, then $x=0$.
b.) Parseval's Identity:

$$
\sum_{\alpha \in I}\left|\left\langle x, x_{\alpha}\right\rangle\right|^{2}=\|x\|^{2} \quad \forall x \in H
$$

c.) For $x \in H$,

$$
x=\sum_{\alpha \in I}\left\langle x_{1} x_{\alpha}\right\rangle x_{\alpha} .
$$

pt: alyebore

Def: (Orthonormal Basis)
An orthonormal set having properties C) through (c) is called an orthonomel basis.

Example: $\quad l^{2}(\mathbb{N})=\left\{a:\left.\mathbb{N} \rightarrow \mathbb{C}\left|\sum\right| a_{n}\right|^{2}<\infty\right\}$.
Let $\quad\left\{e_{m}^{m}\right\}_{n=1}^{\infty}= \begin{cases}0 & n \neq m \\ 1 & n=m .\end{cases}$
then $\left\langle e^{m}, e^{n}\right\rangle= \begin{cases}0 & , n \neq m \\ 1 & , n=m\end{cases}$
and $\quad\left\langle a, e^{n}\right\rangle=a_{n}$.
Prop: H is separable $\Leftrightarrow H$ has an orthonormal Scheuder Basis.
pf: (\Rightarrow) Use Gram- Schmidt.
(\Leftrightarrow) Partial sums over $Q+i Q$ ave dense.

Unitary Operators.
Def: Leet $\left(H_{1},\langle, \cdot\rangle_{1}\right)$ and $\left\langle H_{2},\langle\cdot, \cdot\rangle_{2}\right)$ be Hilbert spaces. An invertible, linear up p $U: H_{2} \rightarrow H_{2}$ satisfying

$$
\left\langle U_{x}, U_{y}\right\rangle_{2}=\langle x, y\rangle_{2} \quad \forall x, y \in H_{2} .
$$

is called Unitary.
Note: U is an isometry.
Exp Let $\left\{u_{n}\right\}_{n=1}^{\infty}$ be an orthonormal basis of a Hilbert space, H.
Then the map

$$
F: H \rightarrow l^{2}(N)
$$

defined by $T^{\mu}(x):=\left\{\left\langle x, u_{n}\right\rangle\right\}_{n=1}^{\infty} \quad$ is unitary. (Pret 3).

Adjoint Operators
Let $\quad T \in \mathcal{Z}(H, H)$
Prop: a.) \exists ! $T^{*} \in \mathcal{Z}(H, H)$ called the adjoint of T satisfying

$$
\left\langle T_{x, y}\right\rangle=\left\langle x, T^{*} y\right\rangle .
$$

b.) $\|T *\|=\|T\|, \quad\|T * T\|=\|T\|^{2}$,

$$
(a S+b T)^{*}=\bar{a} S^{*}+\bar{b} T^{*}, \quad(S T)^{*}=T^{*} S^{*}
$$

and $T^{+*}=T$.
c.) Let $\quad R(T)=$ range $\& T$ and $N(T)=$ null apace $\$ T=\left\{x \in H \mid T_{x}=0\right\}$.
then

$$
R(T)^{\perp}=N\left(T^{*}\right)
$$

$$
\text { and } \quad N(T)^{\perp}=\overline{R\left(T^{*}\right)} \text {. }
$$

PF: a.) Let $y \in H$. Define the map $f_{y}(x)=\left\{T_{x}, y\right\rangle$. Then $f_{y} E H^{*}$ and by Riesz Rep than, there exists $z_{y} \in H$ s.t. $\left\langle T_{x, y}\right\rangle=\left\langle x, z_{y}\right\rangle$. Now define $T *$ by

$$
T *: H \rightarrow H \quad, \quad T *(y):=z y
$$

Then $\quad\left\langle T_{x}, y\right\rangle=\left\langle x, T^{+} y\right\rangle$.
T^{*} is linear over C. (Exercise).
Moreover,

$$
\begin{aligned}
& \left\|T^{*}\right\|=\sup _{\substack{x, y+H \\
\left\|_{x}\right\|=\left\|_{y}\right\|=1}}\left|\left\langle T^{*}, y, x\right\rangle\right| \\
& =\sup _{x, y \in H}\left|\left\langle x, T^{*} y\right\rangle\right|=\sup _{\substack{x, f+H \\
\|x\|=\|y\|=1}}\left|\left\langle T_{x, y}\right\rangle\right| \\
& =\| \text { ll } 2 \text {. }
\end{aligned}
$$

$\Rightarrow T^{*} \in \mathcal{L}(H, H)$ and $\|T *\|=\|T\|$.
b.)

$$
\begin{aligned}
\left\|T^{*} T\right\| & =\sup _{\|x\|=\|y\|=1}\left|\left\langle x, T^{*} T_{y}\right\rangle\right| \\
& =\sup _{\|\in\|=\|y\|=1}\left|\left\langle T_{x}, T_{y}\right\rangle\right|
\end{aligned}
$$

Observe

$$
\begin{aligned}
&\|T\|^{2}= \sup _{\|x\|=1}\left\|T_{x}\right\|^{2} \\
&=\sup _{\|x\|=1}\left|\left\langle T_{x}, T_{x}\right\rangle\right| \\
& \leq \sup _{\|x\|=\|y\|=1}\left|\left\langle T_{x}, T_{y}\right\rangle\right| \leq\left(\operatorname{lup}_{\left.\|x\|_{z 1}\left\|T_{x}\right\|\right)^{2}}\right. \\
&=\|T\|^{2}
\end{aligned}
$$

$$
\begin{aligned}
&\langle x, T * * y\rangle=\left\langle T^{*} x, y\right\rangle \\
&=\frac{\left\langle y, T^{*} x\right\rangle}{\left\langle T_{y}, x\right\rangle}=\left\langle x, T_{y}\right\rangle \\
& \Rightarrow \quad T^{* *}=T .
\end{aligned}
$$

(c) Want to prove $R(T)^{\perp}=N(T *)$
and $N(T)^{\perp}=\overline{R(T \gamma)}$
$y \in R(T)^{\perp} \Leftrightarrow\left\langle T_{x, y}\right\rangle=0$ for all $x \in H$
$\Leftrightarrow\left\langle x, T^{*} y\right\rangle=0$ for all $x \in H$
$\Leftrightarrow \quad T^{*} y=0 \quad \Leftrightarrow \quad y \in N(T *)$.
which implies $R(T)^{\perp}=N\left(T^{+}\right)$.
Now, we can also conclude

$$
R(T *)^{\perp}=N(T) .
$$

Thus $\quad(R(T *) \perp)^{\perp}=N(T)^{\perp}$
which implies $\overline{R(T *)}=N(T)^{\perp}$.

An Important Class of Banach Spaces.
L^{p} Spaces
Let (x, M, μ) be a o-finite, complete measure space.
For $1 \leq p<\infty$, define

$$
\begin{aligned}
& L^{P}(\mu):=\left\{f: x \rightarrow \mathbb{C} \left\lvert\, \begin{array}{l}
f \text { measurable } \\
\text { equiv. class } \left., S \mid A I^{P} d u<\infty\right\}
\end{array}\right.\right. \\
& \|f\|_{L^{p}(u)}=\|f\|_{p}:=\left(\int_{x}\left(\left.F\right|^{p} d u\right)^{1 / p} .\right.
\end{aligned}
$$

The case $p=\infty$
Def: Let $f: x \rightarrow C$ be mearimable. Define the essential supremurn of to be

Def.

Observe' $L^{P}(-4)$ is a linear space for $\quad 1 \leqslant p \leqslant \infty$

$$
|f+g|^{p} \leq \quad 2^{p}\left(|f|^{p}+|g|^{p}\right) \text {. }
$$

Goal: Show tut $\|\cdot\|_{p}$ is a norm.
In particular,

$$
\begin{array}{ll}
\text { - }\|f\|_{p}=0 \Longleftrightarrow f \equiv 0 \quad \text { (straight -forward) } \\
\text { - }\|a f\|_{p}=|\alpha|\|F\|_{p} \quad \text { (Easy) }
\end{array}
$$

- D-ineguality (More difficult).

