
 

A Note Concerning the isometry
between

Handt
Given H and H't Riesz Rep
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Det orthonormal Basis

An orthonormal set having properties
a through C is called an orthonormal

basis
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Unitaryoperator
Def Led Ha 2 a and Ha 2

be Hilbert spaces An invertible linear
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Prof a 7 T 2114 H called the
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AnImportantassofBanachspaces

ts m be a o finite

complete measure space
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