A Bit of Point Set Topology	
Det: (Topology)	
A topology on a set, X, is a collection	١
LCP(X), of subsets of X having the	
Adlewing properties:	
a.) BET, XET	
b) V¥cZ, U GEZ GET	
c.) For any 201,, 6.3, ñ.6; er	
The pair (X, 2) is called a topological	
space	
Def: (Basis of a Topology)	
IF X is a set, a basis for a	
topology on X is a collection, B, of subsets of X (called <u>basis elemention</u>	\sim
such flat	-)

a.) For each xeX, JBEB such that xEB b.) IF xEB, NB2, For B, B2EB then JB3EB such that xEB3CB, NB2.

Def: (Topology Generated by a Basis) biven a basis, B, of X. The topology, En generated by B rs defined by UEX C=> For each xeb, FBEBS such that xeBcU.

Example: Very weak/coase topolegy $\Sigma = \frac{1}{2}\phi_1 \times 3.$ Example: Very strong/Sine topology $\Sigma = \mathcal{P}(X)$

Def: [Meager] First Category] ACX is measur (First category) in X if A is a countable union of nowhere dense sets Def: (Second Category) IF A is not meagor then it is of second category Def: (Generie Sets) The complement of a meagor cet is a generie set (residual set). Thm (Baire Category Thm) Let X be a complete metric spare. (1) IF {Un}3000 is a sequence of open dense subsets cot X, tren $\bigcap_{n=1}^{\infty} U_n \quad \text{is dense in } X$ **(2)** X is not a countable union at nowhere dense sets.

•

->	2×ului	أنج	Cauchy	
X comple	te ar	× _K →X (B (xn, m	, 4n.
ح ک	XE \	ı∧ ([#]		
2 Let	. E ²	L _E	nowhere	dense
for all	n21.			
I}	Suffices	to ch	on that	
Ĺ	$\bigcup_{r=1}^{\infty} \overline{E_r}$	+ ψ.		
Thus,) ^c =		
Note,	$(\overline{E}_{n})^{t}$	is op	en and d	ense .
part G) =>	<u>ָ</u> <u> </u>	ΞΥ→≠φ	D .