(2) A linear map, $T: X \rightarrow Y$, is contimons if $\forall \varepsilon>0, \exists \delta>0$ sit.

$$
\|x-y\|_{x}<\delta \Rightarrow\left\|T_{x}-T_{y}\right\|<\varepsilon .
$$

Examples
(a) Let $X=L^{1}(\mu), Y=\mathbb{R}$.

Show that $T: Z^{1}(m) \rightarrow \mathbb{R}$ defined by $\quad T(f):=10 \int F d \mu$ is a bounded, linear map.
(b) Let $x=L^{1}(\mathbb{R}), \quad Y=\mathbb{R}$ consider, $E \subset \mathbb{R}, F \subset \mathbb{R}, E \cap F=\phi$ and $\quad g=2 x_{E}+3 x_{F}$
Show that $T(f):=\int f g d m$ is a bounded linear map.
(c) Consider $\quad X=l^{1}(\mathbb{N})$ Define the operator

$$
T\left(\left\{a_{n}\right\}_{n=1}^{\infty}\right):=\left\{n a_{n}\right\}_{n=1}^{\infty}
$$

$$
I_{s} \quad T: l^{1}(N) \rightarrow l^{1}(N) ? N_{0}
$$

$$
\text { Is } T: l^{1}(\mathbb{N}) \rightarrow l^{\infty}(\mathbb{N}) \text { ? No. }
$$

Is T bounded ? continuous? No

$$
\text { Consider } \quad A_{m}:=\left\{a_{n}^{m}\right\}_{n=1}^{\infty}
$$

where $\quad u_{n}^{m}= \begin{cases}0 & n \neq m \\ m^{-1 / 2} & \text { nom }\end{cases}$

$$
\begin{aligned}
& \Rightarrow \quad\left\|A_{m}\right\|_{l^{1}(N)}=\sum\left|a_{n}^{m}\right|=m^{-1 / 2} . \\
& \Rightarrow A_{m} \xrightarrow{m \rightarrow \infty} 0 \\
& T\left(A_{m}\right)=\left\{n a_{n}^{m}\right\}_{m=1}^{\infty} \text { and } n a_{n}^{m}=\left\{\begin{array}{c}
0 n_{m \neq m} \neq m
\end{array}\right. \\
& \Rightarrow \quad\left\|T\left(A_{m}\right)\right\|_{l^{\infty}(N)}=m^{1 / 2} \xrightarrow[m \rightarrow \infty]{ } \infty .
\end{aligned}
$$

$\Rightarrow T$ is not bounded or continuous.
(d) Consider $X=C 1[[-1,1])$

$$
=\left\{f:[-1,1] \rightarrow \mathbb{R} \left\lvert\, \begin{array}{c}
f \text { continuously } \\
\text { differentiable on } \\
{[-1,1]}
\end{array}\right.\right\}
$$

Define the map

$$
T: C^{1}([-1,1]) \rightarrow C([-1,1]) .
$$

by

$$
T(f):=f^{\prime}
$$

Suppose $C^{1}([-1,1])$. is equipped the supremum norms $\|\cdot\|_{\infty}$.

Is T bounded? continuous? No
Let

$$
\xi_{n}(x)=\frac{1}{n^{1 / 2}} \exp \left(-n x^{2}\right) x_{[-1,1]}(x)
$$

Exercise: Show tut $\left\|\mathrm{g}_{\mathrm{a}}\right\|_{\infty} \rightarrow 0$ but $\left\|T q_{-}\right\|_{\infty} \rightarrow \infty$.

More Linear Operators.
If X and Y are normed linear spaces we denote

$$
\mathcal{L}(X, Y):=\left\{\begin{array}{l|l}
T: X \rightarrow Y & T \text { is linear } \\
T \text { is bounded }
\end{array}\right\} .
$$

Observation: $\mathcal{L}(x, y)$ is a linear space.
Proposition:
Let X, Y be normed linear spaces and $T: x \rightarrow y$ be a linear map. The following are equivalent
(1) T is continuous
(2) T is continuous at O
(3) T is bounded

$$
\text { Proof (1) } \Rightarrow \text { (2) } \Rightarrow(3) \Rightarrow \text { (1). }
$$

Structure of $\mathcal{L}(x, y)$
For $T \in \mathcal{L}(X, y)$ define the operator norm of T by

$$
\begin{aligned}
\|T\| & :=\sup \left\{\left\|T_{x}\right\|:\|x\|=1\right\} . \\
& :=\sup \left\{\frac{\left\|T_{x}\right\|}{\|x\|}: x \neq 0\right\} . \\
& :=\operatorname{inq}\left\{c>0 \mid \quad\left\|T_{x}\right\| \leq c\left\|_{x}\right\| \quad \forall x+x\right) .
\end{aligned}
$$

Note: Given these definitions,

$$
\left\|T_{x}\right\|_{y} \leq\|T\|\|x\|_{x}
$$

Exercise All three definitions are equivalent
Exercise: $\|T\|$ is a norm on $\mathcal{Z}(x, y)$.

Proposition; If Y is a Banach space, then $\mathcal{L}(x, y)$ (equipped with the opernternome) is a Banach space.
pf: Goal: Y complete $\Rightarrow \mathcal{L}(x, y)$ complete.
Let $\left\{T_{n}\right\}_{n=1}^{\infty} c \mathcal{Z}(x, y)$ be a Cavern sequence.
For each $x+X$

$$
\begin{aligned}
\left\|T_{m x}-T_{m x}\right\| & =\|\left(G_{m}-T_{m}\left\|_{x}\right\|\right. \\
& \leq\left\|T_{m}-T_{m}\right\|\|x\| .
\end{aligned}
$$

$\Rightarrow\left\{T_{n} \times\right\}_{n=1}^{\infty} \subset Y$ is a Cauchy sequence.
Since Y is complete, for all $x \in X$,

$$
\exists z_{x} \in Y \quad \text { s.t. } \quad T_{n \times} \xrightarrow{n \rightarrow \infty} z_{x}
$$

Define the function

$$
T_{x}:=z_{x}=\lim _{n \rightarrow \infty} T_{n x} .
$$

Claim: $T \in \mathcal{J}(X, Y)$ and $\left\|T_{n}-T\right\| \rightarrow 0$.
(1) $T \in \mathcal{L}(x, y)$
T is linear T_{m} are linear and limits are linear. It remains to show that T is bounded.
Let $x+X$, then

$$
\begin{aligned}
\left\|T_{x}\right\| & \leq\left\|\left(T-T_{n}\right)_{x}\right\|+\left\|T_{n}\right\| \\
& \leq\left\|\left(T-T_{n}\right)_{x}\right\|+\left\|T_{n}\right\|\|x\| \\
& \leq\left\|\left(T-T_{n}\right)_{x}\right\|+\left(\sup _{n}\left\|T_{n}\right\|\right)\|x\|
\end{aligned}
$$ $0 \quad$ and $\sup _{n}\left\|T_{n}\right\|<\infty$.

$$
\begin{gathered}
\Rightarrow \quad\left\|T_{x}\right\| \leq\left(\sup _{n}\left\|T_{n}\right\|\right)\|x\| \\
\Rightarrow \quad\|T\| \leq\left(\sup _{n}\left\|T_{n}\right\|\right) .
\end{gathered}
$$

$\Rightarrow T$ is bounded.
(2) $\left\|T-T_{n}\right\| \rightarrow 0$

Let $\left.\varepsilon>0, S_{2} T_{n}\right\}$ Cauchy imples $\exists N \in \mathbb{N}$ s.t. if $n, m \geq N$ then $\left\|T_{n}-T_{m}\right\| \subset 2 / 100$.

Claims For any $n \geq N, 7 x_{n} \times X$ suck teat $\left\|x_{n}\right\|=1$ and

$$
\left\|T-T_{n}\right\| \leq\left\|\left(T-T_{n}\right)_{x_{n}}\right\|+\varepsilon / 100 .
$$

Assuming the claim holds, we also mote tut for any fixed $n \geq N$, $7 M$ sit. $m \geq M$ implies

$$
\left\|T_{x_{n}}-T_{m} x_{n}\right\|<\varepsilon / 100
$$

Now for $n \geq N, \quad m \geq \max (N, M)$

$$
\begin{aligned}
\left\|T_{n}-T\right\| & \leq\left\|T_{x_{n}}-T_{n} x_{n}\right\|+\varepsilon / 100 \\
& \leq\left\|T_{x_{n}}-T_{m} x_{n}\right\|+\left\|T_{m}-x_{n} x_{n}\right\|+\varepsilon / 100 \\
& \leq \varepsilon / 100+\left\|T_{m}-T_{n}\right\|\left\|_{x_{n} \|}\right\| \varepsilon / 100 \\
& <\varepsilon . \quad \Pi
\end{aligned}
$$

