

Examples
(a) Let
$$X = L^{2}(w)$$
, $Y = R^{2}$.
Show that $T: L^{1}(w) \rightarrow R$ defined
by $T(F) := 10 (F du)$
is a bounded, linear map.
(b) Let $X = L^{1}(R^{2})$, $Y = R^{2}$
consider, $E \subset R^{2}$, $F \subset R^{2}$, $E \cap F = \phi$
and $g = 2\pi E + 3\pi E$
Show that $T(F) := (F g dm)$
is a bounded linear map.

Consider X= 1 ¹ (N)
Define the operator
$T(\{x_n,y_n\}) := \{x_n,y_n\}_{n=1}^{\infty}$
Is T: L ¹ (N) → L ¹ (N)? No
Js T: LINN > LO(N)? NO.
Is T bounded? continuous? No
Consider $A_m := \{a_n^m\}_{n=1}^\infty$
where $a_n = \begin{cases} D & n \neq n \\ m^{-k_2} & n \neq n \end{cases}$
$=>$ $\ A_m\ _{L^{4}(N)} = \sum a_m = m^{-1/2}$.
- An mon O
$T(A_m) = \{n \in n\}_{n=1}^{\infty} \text{ and } n \in \{n, n\}_{n=1}^{\infty} \}$
$ = \frac{1}{2} + \frac$
>> T is not bounded or continuous.

(a) Consider
$$X = C^{4}[E_{-1},\overline{n}]$$

 $= \sum_{i=1}^{i} \sum_{j=1}^{i} \sum_{\substack{i \in i \in i \atop i \in i \atop j \in i \atop j \in i \atop i \atop j \in i$

(

More Linear Openetors
IF X and Y are normed linear
spaces we denote
L(X,Y) := {T:X=>Y T is linear }
Observation. Z(X,Y) is a linear space.
Proposition:
Let X, Y be normed linear spaces
and T: x-ry be a lineer map.
The following are equivalent
1 T is continuous
2) T is continuous at 0
3) T is bounded
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Structure of Z(X,V)
For TEZLX, Y) define the operator
norm of T by
11 T 11 := sup 2 11 Tx11 : 11x11=13.
:= sup { <u> Tx </u> : x+0}.
:= inf 2 C>0 Tx ≤ C/ x ∀x +X)
Note' Given these definitions,
ILTXIIY E ILTII IIXIIX
Exercisé All funee definitions are equivalent
Exercise: T is a norm on Z(X,Y).

Proposition: If Y is a Banach Space,
then Z(X, Y) (equipped with the operator norm)
is a Banach space.
<u>pf:</u> Goal: Y complete => J(X,Y) complete.
Let 2Tn3n=1 CZ(X,Y) be a Cauchy
Sequence.
For each x + X
$\ T_{n\times}-T_{n\times}\ = \ \{T_{n}-T_{n}\}_{\times}\ $
≤ \ TT_ × .
⇒ 2 Tn×3n=1 CY is a Cauchy seguence.
Since Y is complete, For all x + X,
$\exists z_x \in Y$ s.t. $T_{u^x} \xrightarrow{u \to a^0} z_x$
Detine des franction
$T \times := Z \times = \lim_{n \to \infty} T_n \times .$

Claim: TEJ(XY) and IIT-TI >0.
$(1) \tau \in \mathcal{I}(x, Y)$
T is linear To are linear and limits are linear.
It remains to show that T is bounded.
het x : X, then
$\ T_{x} \ \leq \ (T_{x} T_{y}) \times \ + \ T_{x} \times \ $
$\frac{2}{11} \left[\left[\left[\left[-\tau_{i} \right]_{x} \right] \right] + \left[$
of and supplitude 200.
$\Rightarrow \qquad \qquad$
$=$ $\ T\ \in (\int_{T} u^{2} \ T_{L}\).$
=) T 12 bounded.

 $2 \qquad ||T - T_n|| \rightarrow 0$ Let $\varepsilon > 0, \quad S_1 T_n S$ Cauchy implies $3 N \in \mathbb{N} \quad (.t. : f \quad n, m \geq N) \quad \text{then}$ $\|T_n - T_m\| \leq \frac{\ell}{100}.$

Claimb For any n2N, 7×n•X Such frest ||xn||= 2 and 11 T-Tul & 11 (t-Tu) xull + \$/100. Assuming the claim holds, we also note quet for any fixed nzN, JM s.t. mzM implies Il Txn-Tmxnll < €/100 Now for nZN, mz max (N,M) $\|T_n - T\| \leq \|T_{\times_n} - T_n \times_n \| + \varepsilon/1000$ $\leq \| T_{X_n} - T_n x_n \| + \| T_n x_n - T_n x_n \| + \frac{1}{2} \frac{$ < 1/100 + 11 Th-Tul 1/Xn 11 + 4/100 く そ.